ChemInform Abstract: Internucleotide Phosphite Sulfurization with Tetraethylthiuram Disulfide. Phosphorothioate Oligonucleotide Synthesis via Phosphoramidite Chemistry.

ChemInform ◽  
2010 ◽  
Vol 23 (14) ◽  
pp. no-no
Author(s):  
H. VU ◽  
B. L. HIRSCHBEIN
Author(s):  
Li-Fu Song ◽  
Zheng-Hua Deng ◽  
Zi-Yi Gong ◽  
Lu-Lu Li ◽  
Bing-Zhi Li

Over the past decades, remarkable progress on phosphoramidite chemistry-based large-scale de novo oligonucleotide synthesis has been achieved, enabling numerous novel and exciting applications. Among them, de novo genome synthesis and DNA data storage are striking. However, to make these two applications more practical, the synthesis length, speed, cost, and throughput require vast improvements, which is a challenge to be met by the phosphoramidite chemistry. Harnessing the power of enzymes, the recently emerged enzymatic methods provide a competitive route to overcome this challenge. In this review, we first summarize the status of large-scale oligonucleotide synthesis technologies including the basic methodology and large-scale synthesis approaches, with special focus on the emerging enzymatic methods. Afterward, we discuss the opportunities and challenges of large-scale oligonucleotide synthesis on de novo genome synthesis and DNA data storage respectively.


2021 ◽  
Author(s):  
Phil Baran ◽  
Kyle W. Knouse ◽  
Yazhong Huang ◽  
Shenjie Qiu ◽  
wei hao ◽  
...  

<div><div><div><p>The early promise of gene-based therapies is currently being realized at an accelerated pace with over 155 active clinical trials for antisense compounds and multiple FDA-approved oligonucleotide therapeutics. Fundamental advances in this area are vital and present an unprecedented opportunity to both address disease states that have been resistant to other common modalities and improve the significant sustainability challenges associated with production of these complex molecules on a commercial scale. The advent of phosphoramidite coupling chemistry and solid-phase synthesis 40 years ago democratized oligonucleotide synthesis to the scientific community, paving the way for many of these stunning developments. The reliability and generality of this approach for the preparation of native phosphate-diesters is attributed to the high reactivity of phosphorus when in the P(III)-oxidation state versus the desired P(V), as it enables rapid P-heteroatom bond formation. However, the growing demand for more diverse phosphorus-based linkages has challenged the limits of this technology. For example, the phosphorothioate (PS) linkage, which stabilizes oligonucleotides towards nuclease cleavage, is universally employed in current oligonucleotide therapeutics but is generally incorporated in racemic form. Stereodefined PS oligonucleotides may have desirable biological and physical properties but are accessed with difficulty using phosphoramidite chemistry. Here we report a flexible and efficient [P(V)]-based platform that can install a wide variety of phosphate linkages at will into oligonucleotides. This approach uses readily accessible reagents and can efficiently install not only stereodefined or racemic thiophosphates, but can install any combination of (S, R or rac)-PS with native phosphodiester (PO2) and phosphorodithioate (PS2) linkages into DNA and other modified nucleotides. Importantly this platform easily accesses this diversity under a standardized coupling protocol with sustainably prepared, stable, P(V) reagents.</p></div></div></div>


2021 ◽  
Author(s):  
Phil Baran ◽  
Kyle W. Knouse ◽  
Yazhong Huang ◽  
Shenjie Qiu ◽  
wei hao ◽  
...  

<div><div><div><p>The early promise of gene-based therapies is currently being realized at an accelerated pace with over 155 active clinical trials for antisense compounds and multiple FDA-approved oligonucleotide therapeutics. Fundamental advances in this area are vital and present an unprecedented opportunity to both address disease states that have been resistant to other common modalities and improve the significant sustainability challenges associated with production of these complex molecules on a commercial scale. The advent of phosphoramidite coupling chemistry and solid-phase synthesis 40 years ago democratized oligonucleotide synthesis to the scientific community, paving the way for many of these stunning developments. The reliability and generality of this approach for the preparation of native phosphate-diesters is attributed to the high reactivity of phosphorus when in the P(III)-oxidation state versus the desired P(V), as it enables rapid P-heteroatom bond formation. However, the growing demand for more diverse phosphorus-based linkages has challenged the limits of this technology. For example, the phosphorothioate (PS) linkage, which stabilizes oligonucleotides towards nuclease cleavage, is universally employed in current oligonucleotide therapeutics but is generally incorporated in racemic form. Stereodefined PS oligonucleotides may have desirable biological and physical properties but are accessed with difficulty using phosphoramidite chemistry. Here we report a flexible and efficient [P(V)]-based platform that can install a wide variety of phosphate linkages at will into oligonucleotides. This approach uses readily accessible reagents and can efficiently install not only stereodefined or racemic thiophosphates, but can install any combination of (S, R or rac)-PS with native phosphodiester (PO2) and phosphorodithioate (PS2) linkages into DNA and other modified nucleotides. Importantly this platform easily accesses this diversity under a standardized coupling protocol with sustainably prepared, stable, P(V) reagents.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document