high reactivity
Recently Published Documents


TOTAL DOCUMENTS

958
(FIVE YEARS 371)

H-INDEX

51
(FIVE YEARS 8)

Fuel ◽  
2022 ◽  
Vol 312 ◽  
pp. 122949
Author(s):  
Yanqing Cui ◽  
Haifeng Liu ◽  
Mingsheng Wen ◽  
Lei Feng ◽  
Can Wang ◽  
...  

2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Chenrayan Senthil ◽  
Sun-Sik Kim ◽  
Hyun Young Jung

AbstractPolymer binders for sulfur cathodes play a very critical role as they prerequisites for an in-situ immobilization against polysulfide shuttle and volume change, while ensuring good adhesion within active materials for ion conduction along with robust mechanical and chemical stability. Here, we demonstrate anionic surface charge facilitated bio-polymer binder for sulfur cathodes enabling excellent performance and fire safety improvement. The aqueous-processable tragacanth gum-based binder is adjusted to house high sulfur loading over 12 mg cm−2 without compromising the sulfur utility and reversibility, imparting high accessibility for Li-ions to sulfur particles about 80%. The intrinsic rod and sphere-like saccharidic conformal fraction’s multifunctional polar units act as active channels to reach the sulfur particles. As a result, the binder entraps polysulfides with 46% improvement and restrains the volume changes within 16 % even at 4 C. Moreover, the flexible Li-S battery delivers a stack gravimetric energy density of 243 Wh kg–1, demonstrating high reactivity of sulfur along with good shape conformality, which would open an avenue for the potential development of the compact and flexible high-power device.


Author(s):  
Yuyun Lu ◽  
Molan Zhang ◽  
Dejian Huang

Dietary organosulfur-containing compounds (DOSCs) in fruits, vegetables, and edible mushrooms may hold the key to the health-promotion benefits of these foods. Yet their action mechanisms are not clear, partially due to their high reactivity, which leads to the formation of complex compounds during postharvest processing. Among postharvest processing methods, thermal treatment is the most common way to process these edible plants rich in DOSCs, which undergo complex degradation pathways with the generation of numerous derivatives over a short time. At low temperatures, DOSCs are biotransformed slowly during fermentation to different metabolites (e.g., thiols, sulfides, peptides), whose distinctive biological activity remains largely unexplored. In this review, we discuss the bioavailability of DOSCs in human digestion before illustrating their potential mechanisms for health promotion related to cardiovascular health, cancer chemoprevention, and anti-inflammatory and antimicrobial activities. In particular, it is interesting that different DOSCs react with glutathione or cysteine, leading to the slow release of hydrogen sulfide (H2S), which has broad bioactivity in chronic disease prevention. In addition, DOSCs may interact with protein thiol groups of different protein targets of importance related to inflammation and phase II enzyme upregulation, among other action pathways critical for health promotion. Expected final online publication date for the Annual Review of Food Science and Technology, Volume 13 is March 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.


Author(s):  
Aristides Reis ◽  
André Santos ◽  
Amison Souza ◽  
Luiz Arrais Junior ◽  
Heberty Facundo ◽  
...  

Abstract High levels of nitric oxide (NO) can signal nitrosative stress, but its analysis is challenging considering the high reactivity, short half-life and transient behavior of this target molecule in biological milieu. In this work, a cardanol-based salophen-modified carbon paste electrode (CDN-salophen/MCPE) was developed and successfully applied to assess NO bioavailability in blood plasma of mice under induced stress. The results revealed that the modifier improved the device performance in terms of signal-to-noise ratio, charge-transport and fouling resistance. NO reactivity on CDN-salophen/MCPE was higher in 0.1 mol L‒1 H2SO4, and the resulting redox process involves adsorption steps that control the reaction kinetics. Monitoring molecule oxidation by square-wave voltammetry (100 s−1 frequency, 30 mV amplitude, 2 mV scan increment, after electrode preconditioning at 0.9 V for 15 s for analyte accumulation), it was possible to identify and quantify NO with great sensitivity (detection and quantification limit < 0.1 µmol L‒1) and low data variance (RSD ≤ 9.4% for repeatability and reproducibility tests), through a simple, fast and reliable electroanalytical protocol. The robustness acquired with CDN-salophen/MCPE allowed to detect changes in NO content in blood plasma during nitrosative stress, proving its efficiency for research on this subject.


Processes ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 92
Author(s):  
Tung-Hsuan Lu ◽  
Ying-Liang Chen ◽  
Hong-Paul Wang ◽  
Juu-En Chang

The purpose of this study was to investigate the mechanism causing the unsoundness of ladle slag. Calcination temperature may have an impact on the level of reactivity of f-CaO. When CaO was produced at a higher temperature, the reactivity of CaO was lower. For example, dead burnt CaO (DCaO) was produced at higher temperatures than light burnt CaO (LCaO); therefore, DCaO had less reactivity than LCaO. In a hydration test, DCaO (1500 °C) showed 62 times lower reactivity than LCaO (900 °C), which meant that DCaO would result in the delay of hydration of CaO easily. Additionally, DCaO would cause unsoundness more easily than LCaO when adding the same number of cementitious materials. For this reason, using ASTM C114-18 (Standard Test Methods for Chemical Analysis of Hydraulic Cement) to quantify DCaO content may underestimate DCaO content by up to 20%. Conversely, this method was more suitable for f-CaO since it had high reactivity. Moreover, this study demonstrated that ladle slag would cause unsoundness when added into the cementitious material because it was produced from a higher temperature process (over 1500 °C), which generates the DCaO. Therefore, when reusing ladle slag, the problem of low reactivity of DCaO should be considered.


2022 ◽  
Vol 573 ◽  
pp. 151561
Author(s):  
Zhiwei Peng ◽  
Chun Yang ◽  
Yuzhen Hu ◽  
Feifan Bai ◽  
Weiwei Chen ◽  
...  

2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Arpita Roy ◽  
Apoorva Sharma ◽  
Saanya Yadav ◽  
Leta Tesfaye Jule ◽  
Ramaswamy Krishnaraj

Today, environmental contamination is a big concern for both developing and developed countries. The primary sources of contamination of land, water, and air are extensive industrialization and intense agricultural activities. Various traditional methods are available for the treatment of different pollutants in the environment, but all have some limitations. Due to this, an alternative method is required which is effective and less toxic and provides better outcomes. Nanomaterials have attracted a lot of interest in terms of environmental remediation. Because of their huge surface area and related high reactivity, nanomaterials perform better in environmental clean-up than other conventional approaches. They can be modified for specific uses to provide novel features. Due to the large surface-area-to-volume ratio and the presence of a larger number of reactive sites, nanoscale materials can be extremely reactive. These characteristics allow for higher interaction with contaminants, leading to a quick reduction of contaminant concentration. In the present review, an overview of different nanomaterials that are potential in the remediation of environmental pollutants has been discussed.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 89
Author(s):  
Janah Shaya ◽  
Gabriel Correia ◽  
Benoît Heinrich ◽  
Jean-Charles Ribierre ◽  
Kyriaki Polychronopoulou ◽  
...  

We report herein the synthesis of siloxane-functionalized CBP molecules (4,4′-bis(carbazole)-1,1′-biphenyl) for liquid optoelectronic applications. The room-temperature liquid state is obtained through a convenient functionalization of the molecules with heptamethyltrisiloxane chains via hydrosilylation of alkenyl spacers. The synthesis comprises screening of metal-catalyzed methodologies to introduce alkenyl linkers into carbazoles (Stille and Suzuki Miyaura cross-couplings), incorporate the alkenylcarbazoles to dihalobiphenyls (Ullmann coupling), and finally introduce the siloxane chains. The used conditions allowed the synthesis of the target compounds, despite the high reactivity of the alkenyl moieties bound to π-conjugated systems toward undesired side reactions such as polymerization, isomerization, and hydrogenation. The features of these solvent-free liquid CBP derivatives make them potentially interesting for fluidic optoelectronic applications.


Reactions ◽  
2021 ◽  
Vol 3 (1) ◽  
pp. 12-29
Author(s):  
Dhruba P. Poudel ◽  
Richard T. Taylor

The construction of well-defined polyurethane dendrimers is challenging due to the high reactivity of externally added or in situ formed isocyanates leading to the formation of side products. With a primary focus of dendrimer research being the interaction of the periphery and the core, we report the synthesis of a common polyurethane dendron, which allows for the late-stage variation of both the periphery and the core. The periphery can be varied simply by installing a clickable unit in the dendron and then attaching to the core and vice-versa. Thus, a common dendron allows for varying periphery and core in the final two steps. To accomplish this, a protecting group-free, one-pot multicomponent Curtius reaction was utilized to afford a robust and versatile AB2 type polyurethane dendron employing commercially available simple molecules: 5-hydroxyisophthalic acid, 11-bromoundecanol, and 4-penten-1-ol. Subsequent late-stage modifications of either dendrons or dendrimers via a thiol-ene click reaction gave surface-functionalized alternating aromatic-aliphatic polyurethane homodendrimers to generation-three (G3). The dendrons and the dendrimers were characterized by NMR, mass spectrometry, and FT-IR analysis. A bifunctional AB2 type dendritic monomer demonstrated this approach’s versatility that can either undergo a thiol-ene click or attachment to the core. This approach enables the incorporation of functionalities at the periphery and the core that may not withstand the dendrimer growth for the synthesis of polyurethane dendrimers and other dendritic macromolecules.


2021 ◽  
Author(s):  
Jaeyoung Cho ◽  
Yeonjoon Kim ◽  
Brian Etz ◽  
Gina Fioroni ◽  
Nimal Naser ◽  
...  

Bioderived ethers have recently drawn attention as a response to increasing demands on clean alternative fuels. A theory-experiment combined approach was introduced for the five ether molecules representing linear, branched, and cyclic ethers to derive rational design principles for low-emission and high-reactivity ethers. Flow reactor experiments and quantum-mechanical calculations were performed at high (750–1100K) and low temperature (400–700K) regimes to investigate the structural effects on their sooting tendency and reactivity, respectively. At a high-temperature regime, ethers’ high sooting tendency is related to increased C3 and C4 hydrocarbon formation compared to C1 and C2 products from oxidation reactions. On the other hand, the reactivity at the low-temperature regime is determined by the activation energies of reaction steps until ketohydroperoxide formation. These studies found that ethers’ sooting tendency and reactivity are relevant to two structural factors: the carbon type (primary to quaternary) and the relative position of ether oxygen atoms to carbon atoms. These factors were utilized to build a multivariate model to predict the cetane number (CN) and yield sooting index (YSI) of 50 different ethers. The model suggests building blocks with specific carbon types that maximize CN and minimize YSI, leading to the design principles of ethers toward low emissions and high reactivity fuels for transport applications. Ethers with a high CN and low YSI were then proposed using the developed model, and through experimental measurements, it was proved that they are promising biodiesel candidates.


Sign in / Sign up

Export Citation Format

Share Document