ChemInform Abstract: Regio- and Enantioselective Synthesis of Pyrrolidines Bearing a Quaternary Center by Palladium-Catalyzed Asymmetric [3 + 2] Cycloaddition of Trimethylenemethanes.

ChemInform ◽  
2013 ◽  
Vol 44 (30) ◽  
pp. no-no
Author(s):  
Barry M. Trost ◽  
Tom M. Lam ◽  
Melissa A. Herbage
2020 ◽  
Vol 11 (40) ◽  
pp. 11068-11071
Author(s):  
Aurapat Ngamnithiporn ◽  
Toshihiko Iwayama ◽  
Michael D. Bartberger ◽  
Brian M. Stoltz

The development of a palladium-catalyzed enantioselective decarboxylative allylic alkylation of cyclic siloxyketones to produce enantioenriched silicon-tethered heterocycles is reported.


2019 ◽  
Vol 23 (11) ◽  
pp. 1168-1213 ◽  
Author(s):  
Samar Noreen ◽  
Ameer Fawad Zahoor ◽  
Sajjad Ahmad ◽  
Irum Shahzadi ◽  
Ali Irfan ◽  
...  

Background: Asymmetric catalysis holds a prestigious role in organic syntheses since a long time and chiral inductors such as ligands have been used to achieve the utmost desired results at this pitch. The asymmetric version of Tsuji-Trost allylation has played a crucial role in enantioselective synthesis. Various chiral ligands have been known for Pdcatalyzed Asymmetric Allylic Alkylation (AAA) reactions and exhibited excellent catalytic potential. The use of chiral ligands as asymmetric inductors has widened the scope of Tsuji-Trost allylic alkylation reactions. Conclusion: Therefore, in this review article, a variety of chiral inductors or ligands have been focused for palladium catalyzed asymmetric allylic alkylation (Tsuji-Trost allylation) and in this regard, recently reported literature (2013-2017) has been described. The use of ligands causes the induction of enantiodiscrimination to the allylated products, therefore, the syntheses of various kinds of ligands have been targeted by many research groups to employ in Pd-catalyzed AAA reactions.


2018 ◽  
Vol 20 (5) ◽  
pp. 1265-1268 ◽  
Author(s):  
Wenyong Chen ◽  
Dongfang Meng ◽  
Blaise N’Zemba ◽  
William J. Morris

Author(s):  
Douglass F. Taber

Ramón Gómez Arrayás and Juan C. Carretero of the Universidad Autónoma de Madrid effected (Chem. Commun. 2011, 47, 6701) enantioselective conjugate borylation of an unsaturated sulfone 1, leading to the alcohol 2. Robert E. Gawley of the University of Arkansas found (J. Am. Chem. Soc. 2011, 133, 19680) conditions for enantioselective ketone reduction that were selective enough to distinguish between the ethyl and propyl groups of 3 to give 4. Vicente Gotor of the Universidad de Oviedo used (Angew. Chem. Int. Ed. 2011, 50, 8387) an overexpressed Baeyer-Villiger monoxygenase to prepare 6 by dynamic kinetic resolution of 5. Li Deng of Brandeis University prepared (J. Am. Chem. Soc. 2011, 133, 12458) 8 in high ee by kinetic enantioselective migration of the alkene of racemic 7. Bernhard Breit of the Freiburg Institute for Advanced Studies established (J. Am. Chem. Soc. 2011, 133, 20746) the oxygenated quaternary center of 10 by the addition of benzoic acid to the allene 9. Keith R. Fandrick of Boehringer Ingelheim constructed (J. Am. Chem. Soc. 2011, 133, 10332) the oxygenated quaternary center of 13 by enantioselective addition of the propargylic nucleophile 12 to 11. Yian Shi of Colorado State University devised (J. Am. Chem. Soc. 2011, 133, 12914) conditions for the enantioselective transamination of the α-keto ester 14 to the amine 15. Professor Deng added (Adv. Synth. Catal. 2011, 353, 3123) 18 to an enone 17 to give the protected amine 19. Song Ye of the Institute of Chemistry, Beijing effected (J. Am. Chem. Soc. 2011, 133, 15894) elimination/addition of an unsaturated acid chloride 20 to give the γ-amino acid derivative 22. Frank Glorius of the Universität Münster added (Angew. Chem. Int. Ed. 2011, 50, 1410) an aldehyde 23 to 24 to give the amide 25. Sentaro Okamoto of Kanagawa University designed (J. Org. Chem. 2011, 76, 6678) an organocatalyst for the enantioselective Steglich rearrangement of 26, creating the aminated quaternary center of 27. Most impressive of all was the report (Org. Lett. 2011, 13, 5460) by Hélène Lebel of the Université de Montréal of the direct enantioselective C–H amination of 28 to give 29.


ChemInform ◽  
2007 ◽  
Vol 38 (30) ◽  
Author(s):  
Tim J. Brunker ◽  
Brian J. Anderson ◽  
Natalia F. Blank ◽  
David S. Glueck ◽  
Arnold L. Rheingold

Sign in / Sign up

Export Citation Format

Share Document