Cortical and peripheral effects on single neurons of the lateral reticular nucleus in the monkey

1987 ◽  
Vol 256 (4) ◽  
pp. 581-589 ◽  
Author(s):  
Gabriella Marini ◽  
Mario Wiesendanger
1970 ◽  
Vol 26 (2) ◽  
pp. 239-252 ◽  
Author(s):  
Peter Bruckmoser ◽  
Marie-Claude Hepp-Reymond ◽  
Mario Wiesendanger

1971 ◽  
Vol 2 (6) ◽  
pp. 439-443 ◽  
Author(s):  
Yu. I. Arshavskii ◽  
M. B. Berkinblit ◽  
I. M. Gel'fand ◽  
O. I. Fukson

1972 ◽  
Vol 43 (1) ◽  
pp. 259-263 ◽  
Author(s):  
Ingmar Rose´n ◽  
Peter Scheid

1986 ◽  
Vol 251 (5) ◽  
pp. R934-R940
Author(s):  
D. A. Bereiter ◽  
D. S. Gann

The effect of electrical stimulation of the caudolateral brain stem on plasma adrenocorticotropin (ACTH) was assessed in cats anesthetized with alpha-chloralose-urethan. To examine the influence of stimulus pattern on ACTH release, an equal number of pulses was presented in a continuous pattern and in a burst pattern at each electrode site. Stimulation of the magnocellular portion (layers 4-6) of trigeminal nucleus caudalis evoked a significant (P less than 0.01) and equal peak change in plasma ACTH after continuous pattern (+121 +/- 32 pg/ml) and after burst pattern stimuli (+126 +/- 30 pg/ml, n = 21). In contrast, stimulation of more ventromedial portions (layers 7-8) of nucleus caudalis had no significant effect on plasma ACTH. Stimulation of the trigeminal lateral cervical region the caudal extent of the A1 noradrenergic cell group, or the lateral reticular nucleus evoked significant peak increases in plasma ACTH regardless of stimulus pattern. Transient changes in arterial pressure accompanied brain stem stimulation and were not correlated with the changes in ACTH. The results indicate that stimulation of trigeminal subnucleus caudalis, a brain stem region that processes nociceptor afferent information, evokes a prompt increase in plasma ACTH. Stimulation of brain stem regions that process autonomic and cardiovascular afferent information (A1 region, lateral reticular nucleus) also facilitate ACTH release. No significant influence of stimulus pattern on brain stem-evoked ACTH release was seen. The results support the hypothesis that the influence of the central nervous system on ACTH release may be processed by parallel pathways at the caudal brain stem level.


1988 ◽  
Vol 59 (1) ◽  
pp. 226-247 ◽  
Author(s):  
A. J. Janss ◽  
G. F. Gebhart

1. The modulation of spinal nociceptive transmission from the lateral reticular nucleus (LRN) was characterized for 47 spinal dorsal horn neurons in pentobarbital-anesthetized, paralyzed rats. All 47 units studied had receptive fields confined to the glabrous skin of the plantar surface of the ipsilateral hind foot and responded to mechanical stimulation as well as noxious heating (50 degrees C). Rostral projections contained in the ventrolateral quadrant of the cervical spinal cord were demonstrated for 15 of the 47 units by antidromic invasion. Glutamate- and stimulation-produced descending inhibition, the spinal pathway, and tonic descending inhibition from the LRN were systematically examined. 2. Inhibition of unit responses to heating of the skin by electrical stimulation in the LRN varied with the intensity, pulse duration (100 or 400 microseconds), and frequency (25–100 Hz) of stimulation. Greater inhibition was produced at lower intensities of stimulation with the 400-microseconds pulse duration and a frequency of 100 Hz. The effects of stimulation on spontaneous activity and responses to heat were compared in 16 experiments; inhibition of spontaneous activity was intensity dependent and did not differ significantly in magnitude from stimulation-produced inhibition of responses to heating of the skin. 3. Tracking experiments established that stimulation in the ipsilateral and contralateral ventrolateral medulla reliably attenuated unit responses to noxious heating of the skin and that stimulation in the LRN produced maximal inhibition at a low intensity of stimulation. Descending inhibition was quantitatively characterized from sites within (n = 32) and outside (n = 30) the LRN. Both the extrapolated mean stimulation threshold for inhibition and mean intensity inhibiting unit responses to heat to 50% of control were significantly lower for sites in the LRN. 4. The responses of seven spinal units to graded noxious heating of the skin were studied; all exhibited linear monotonic stimulus-response functions (SRFs) throughout the temperature range examined (42–50 degrees C). Electrical stimulation in the LRN significantly decreased the slope (42 +/- 4% of control) of the SRFs and increased the neuronal response threshold (2.0 +/- 0.7 degrees C). 5. S-glutamate (50 nmol, 0.5 microliter) was microinjected into stimulation sites within (n = 15) and distant from (n = 6) the LRN. Glutamate produced a transient (less than 7 min) but significant attenuation of neuronal responses to heat to 35 +/- 6% of control only when microinjected into the LRN.(ABSTRACT TRUNCATED AT 400 WORDS)


Sign in / Sign up

Export Citation Format

Share Document