nociceptive transmission
Recently Published Documents


TOTAL DOCUMENTS

293
(FIVE YEARS 32)

H-INDEX

45
(FIVE YEARS 3)

2021 ◽  
Vol 22 (20) ◽  
pp. 11074
Author(s):  
Anna Piotrowska ◽  
Katarzyna Ciapała ◽  
Katarzyna Pawlik ◽  
Klaudia Kwiatkowski ◽  
Ewelina Rojewska ◽  
...  

Recent findings have highlighted the roles of CXC chemokine family in the mechanisms of neuropathic pain. Our studies provide evidence that single/repeated intrathecal administration of CXCR2 (NVP-CXCR2-20) and CXCR3 ((±)-NBI-74330) antagonists explicitly attenuated mechanical/thermal hypersensitivity in rats after chronic constriction injury of the sciatic nerve. After repeated administration, both antagonists showed strong analgesic activity toward thermal hypersensitivity; however, (±)-NBI-74330 was more effective at reducing mechanical hypersensitivity. Interestingly, repeated intrathecal administration of both antagonists decreased the mRNA and/or protein levels of pronociceptive interleukins (i.e., IL-1beta, IL-6, IL-18) in the spinal cord, but only (±)-NBI-74330 decreased their levels in the dorsal root ganglia after nerve injury. Furthermore, only the CXCR3 antagonist influenced the spinal mRNA levels of antinociceptive factors (i.e., IL-1RA, IL-10). Additionally, antagonists effectively reduced the mRNA levels of pronociceptive chemokines; NVP-CXCR2-20 decreased the levels of CCL2, CCL6, CCL7, and CXCL4, while (±)-NBI-74330 reduced the levels of CCL3, CCL6, CXCL4, and CXCL9. Importantly, the results obtained from the primary microglial and astroglial cell cultures clearly suggest that both antagonists can directly affect the release of these ligands, mainly in microglia. Interestingly, NVP-CXCR2-20 induced analgesic effects after intraperitoneal administration. Our research revealed important roles for CXCR2 and CXCR3 in nociceptive transmission, especially in neuropathic pain.


2021 ◽  
Author(s):  
Yanli Dong ◽  
Yiwei Gao ◽  
Shuai Xu ◽  
Yuhang Wang ◽  
Zhuoya Yu ◽  
...  

N-type voltage-gated calcium (CaV) channels mediate Ca2+ influx at the presynaptic terminals in response to action potential and play vital roles in synaptogenesis, neurotransmitter releasing, and nociceptive transmission. Here we elucidate a cryo-electron microscopy (cryo-EM) structure of the human CaV2.2 complex at resolution of 2.8 Å. This complex structure reveals how the CaV2.2, β1, and α2δ1 subunits are assembled. In our structure, the second voltage-sensing domain (VSD) is stabilized at a resting-state conformation, which is distinct from the other three VSDs of CaV2.2 as well as activated VSDs observed in previous structures of CaV channels. The structure also shows that the intracellular gate formed by S6 helices is closed, and a W-helix from the DII-III linker is determined to act as a blocking-ball that causes closed-state inactivation in CaV2.2. Collectively, our structure provides previously unseen structural insights into fundamental gating mechanisms of CaV channels.


2021 ◽  
Author(s):  
Taylor Follansbee ◽  
Dan Domocos ◽  
Eileen Nguyen ◽  
Amanda Nguyen ◽  
Aristea Bountouvas ◽  
...  

The rostral ventromedial medulla (RVM) is important in descending modulation of spinal nociceptive transmission, but it is unclear if these descending pathways also modulate spinal pruriceptive transmission. RVM ON cells are activated by noxious algesic and pruritic stimuli and are pronociceptive. Many RVM-spinal projection neurons express the neurokinin-1 receptor (Tacr1), and ON-cells are excited by local administration of substance P (SP). We hypothesized that Tacr1-expressing RVM ON cells exert an inhibitory effect on itch opposite to their pronociceptive action. Intramedullary microinjection of SP significantly potentiated RVM ON cells and reduced pruritogen-evoked scratching while facilitating mechanical nociception. Chemogenetic activation of RVM Tacr1-expressing RVM neurons also reduced acute pruritogen-evoked scratching behavior while enhancing mechanonociception. Optotagging experiments confirmed RVM Tacr1-expressing neurons to be ON cells. We conclude that Tacr1-expressing ON cells in RVM play a significant role in the descending inhibition of spinal pruriceptive transmission.


2021 ◽  
Vol 22 (7) ◽  
pp. 3794
Author(s):  
Fang Zheng ◽  
Barbara E. Nixdorf-Bergweiler ◽  
Johannes van Brederode ◽  
Christian Alzheimer ◽  
Karl Messlinger

The neuromodulator calcitonin gene-related peptide (CGRP) is known to facilitate nociceptive transmission in the superficial laminae of the spinal trigeminal nucleus caudalis (Sp5C). The central effects of CGRP in the Sp5C are very likely to contribute to the activation of central nociceptive pathways leading to attacks of severe headaches like migraine. To examine the potential impacts of CGRP on laminae I/II neurons at cellular and synaptic levels, we performed whole-cell patch-clamp recordings in juvenile mouse brainstem slices. First, we tested the effect of CGRP on cell excitability, focusing on neurons with tonically firing action potentials upon depolarizing current injection. CGRP (100 nM) enhanced tonic discharges together with membrane depolarization, an excitatory effect that was significantly reduced when the fast synaptic transmissions were pharmacologically blocked. However, CGRP at 500 nM was capable of exciting the functionally isolated cells, in a nifedipine-sensitive manner, indicating its direct effect on membrane intrinsic properties. In voltage-clamped cells, 100 nM CGRP effectively increased the frequency of excitatory synaptic inputs, suggesting its preferential presynaptic effect. Both CGRP-induced changes in cell excitability and synaptic drives were prevented by the CGRP receptor inhibitor BIBN 4096BS. Our data provide evidence that CGRP increases neuronal activity in Sp5C superficial laminae by dose-dependently promoting excitatory synaptic drive and directly enhancing cell intrinsic properties. We propose that the combination of such pre- and postsynaptic actions of CGRP might underlie its facilitation in nociceptive transmission in situations like migraine with elevated CGRP levels.


2021 ◽  
pp. 153-163

BACKGROUND: Although conventional pain relief therapeutics have centered around μ-opioid agonists, these drugs are limited by adverse side effects, including respiratory depression and addiction potential. The ongoing opioid epidemic has galvanized research into novel analgesic therapies with more favorable profiles. New pharmacologic agents have been developed to target neuronal pathways involved in pain sensation. Certain receptors have been recognized to mediate nociceptive transmission, central sensitization, and the development of chronic pain states. OBJECTIVES: We conducted a literature review to identify potential targets for novel analgesic therapies. STUDY DESIGN: This study is a narrative review of potential analgesic targets. We characterize their antinociceptive mechanisms of action and evaluate their therapeutic potential. METHODS: A systemized search of available literature on novel analgesics was performed. A search was performed through the PubMed database to identify articles with key words of “novel analgesics,” “novel non-opioid analgesics,” “novel pain targets,” and “non-opioid analgesics.” Potential drug classes were identified and researched through corresponding keywords, with an emphasis on publications from 2018 to 2020. Older articles were included if frequently referenced by current literature. RESULTS: Potential novel analgesic targets include Nav1.7, Nav1.8, CaV2.2, and transient receptor potential vanilloid-1 (TRPV1) cation channel receptors in the peripheral nervous system. Other approaches disrupt the synthesis of pronociceptive signaling molecules such as nitric oxide, prostaglandin E2, and interleukin-6 (IL-6). Within central pain pathways, modification of -opioid, -opioid, N-methyl-D-aspartate, and cannabinoid receptors have been investigated in chronic pain and hyperalgesia models. Recent advances in molecular technology have also presented opportunities to modify protein expression or the cellular genome altogether. LIMITATIONS: Several analgesic targets have only demonstrated efficacy in preclinical trials. There are limited data evaluating the long-term safety profiles of therapies further on in development. CONCLUSIONS: We provide an overview of potential analgesic therapies in various stages of development, which may become clinically relevant in the near future. Some drugs such as TRPV1 agonists, anti-IL-6, and anti-nerve growth factor antibodies have demonstrated analgesic effect in specific clinical pain states. KEY WORDS: Nav1.7, Cav2.2, TRPV1, mPGES-1, IL-6, FAAH, NGF, gene therapy


2021 ◽  
Vol 22 (5) ◽  
pp. 2672
Author(s):  
Bong Hyo Lee ◽  
Jonghoon Kang ◽  
Hee Young Kim ◽  
Young S. Gwak

Background: In the present study, we examined superoxide-mediated excitatory nociceptive transmission on at-level neuropathic pain following spinal thoracic 10 contusion injury (SCI) in male Sprague Dawley rats. Methods: Mechanical sensitivity at body trunk, neuronal firing activity, and expression of superoxide marker/ionotropic glutamate receptors (iGluRs)/CamKII were measured in the T7/8 dorsal horn, respectively. Results: Topical treatment of superoxide donor t-BOOH (0.4 mg/kg) increased neuronal firing rates and pCamKII expression in the naïve group, whereas superoxide scavenger Tempol (1 mg/kg) and non-specific ROS scavenger PBN (3 mg/kg) decreased firing rates in the SCI group (* p < 0.05). SCI showed increases of iGluRs-mediated neuronal firing rates and pCamKII expression (* p < 0.05); however, t-BOOH treatment did not show significant changes in the naïve group. The mechanical sensitivity at the body trunk in the SCI group (6.2 ± 0.5) was attenuated by CamKII inhibitor KN-93 (50 μg, 3.9 ± 0.4) or Tempol (1 mg, 4 ± 0.4) treatment (* p < 0.05). In addition, the level of superoxide marker Dhet showed significant increase in SCI rats compared to the sham group (11.7 ± 1.7 vs. 6.6 ± 1.5, * p < 0.05). Conclusions: Superoxide and the pCamKII pathway contribute to chronic at-level neuropathic pain without involvement of iGluRs following SCI.


Cephalalgia ◽  
2021 ◽  
pp. 033310242097539
Author(s):  
Nita Katarina Frifelt Wienholtz ◽  
Casper Emil Christensen ◽  
Ditte Georgina Zhang ◽  
Hande Coskun ◽  
Hashmat Ghanizada ◽  
...  

Objective To determine whether early treatment with sumatriptan can prevent PACAP38-induced migraine attacks. Methods A total of 37 patients with migraine without aura were enrolled between July 2018 to December 2019. All patients received an intravenous infusion of 10 picomole/kg/min of PACAP38 over 20 min followed by an intravenous infusion of 4 mg sumatriptan or placebo over 10 min on two study days in a randomised, double-blind, placebo-controlled, crossover study. Results Of 37 patients enrolled, 26 (70.3%) completed the study and were included in analyses. Of the 26 patients, four (15%) developed a PACAP38-induced migraine attack on sumatriptan and 11 patients (42%) on placebo ( p = 0.016). There were no differences in area under the curve for headache intensity between sumatriptan (mean AUC 532) and placebo (mean AUC 779) ( p = 0.35). Sumatriptan significantly constricted the PACAP38-dilated superficial temporal artery immediately after infusion (T30) compared with infusion of placebo ( p < 0.001). Conclusions and relevance: Early treatment with intravenously administered sumatriptan prevented PACAP38-induced migraine. Prevention of migraine attacks was associated with vasoconstriction by sumatriptan in the earliest phases of PACAP provocation. These results suggest that sumatriptan prevents PACAP38-induced migraine by modulation of nociceptive transmission within the trigeminovascular system. Trial Registration: ClinicalTrials.gov (NCT03881644).


2021 ◽  
Vol 17 ◽  
pp. 174480692110580
Author(s):  
Kae Matsuura ◽  
Atsushi Sakai ◽  
Yuji Watanabe ◽  
Yasunori Mikahara ◽  
Atsuhiro Sakamoto ◽  
...  

Oxaliplatin, a platinum-based chemotherapeutic agent, frequently causes severe neuropathic pain typically encompassing cold allodynia and long-lasting mechanical allodynia. Endothelin has been shown to modulate nociceptive transmission in a variety of pain disorders. However, the action of endothelin varies greatly depending on many variables, including pain causes, receptor types (endothelin type A (ETA) and B (ETB) receptors) and organs (periphery and spinal cord). Therefore, in this study, we investigated the role of endothelin in a Sprague–Dawley rat model of oxaliplatin-induced neuropathic pain. Intraperitoneal administration of bosentan, a dual ETA/ETB receptor antagonist, effectively blocked the development or prevented the onset of both cold allodynia and mechanical allodynia. The preventive effects were exclusively mediated by ETA receptor antagonism. Intrathecal administration of an ETA receptor antagonist prevented development of long-lasting mechanical allodynia but not cold allodynia. In marked contrast, an intraplantar ETA receptor antagonist had a suppressive effect on cold allodynia but only had a partial and transient effect on mechanical allodynia. In conclusion, ETA receptor antagonism effectively prevented long-lasting mechanical allodynia through spinal and peripheral actions, while cold allodynia was prevented through peripheral actions.


Sign in / Sign up

Export Citation Format

Share Document