A generic paradigm for mining human mobility patterns based on the GPS trajectory data using complex network analysis

Author(s):  
Shuangyan Wang ◽  
Gang Mei ◽  
Salvatore Cuomo
Informatica ◽  
2019 ◽  
Vol 30 (1) ◽  
pp. 33-52 ◽  
Author(s):  
Pengfei HAO ◽  
Chunlong YAO ◽  
Qingbin MENG ◽  
Xiaoqiang YU ◽  
Xu LI

2021 ◽  
Author(s):  
Chao Chen ◽  
Daqing Zhang ◽  
Yasha Wang ◽  
Hongyu Huang

2021 ◽  
Vol 2 (1) ◽  
pp. 113-139
Author(s):  
Dimitrios Tsiotas ◽  
Thomas Krabokoukis ◽  
Serafeim Polyzos

Within the context that tourism-seasonality is a composite phenomenon described by temporal, geographical, and socio-economic aspects, this article develops a multilevel method for studying time patterns of tourism-seasonality in conjunction with its spatial dimension and socio-economic dimension. The study aims to classify the temporal patterns of seasonality into regional groups and to configure distinguishable seasonal profiles facilitating tourism policy and development. The study applies a multilevel pattern recognition approach incorporating time-series assessment, correlation, and complex network analysis based on community detection with the use of the modularity optimization algorithm, on data of overnight-stays recorded for the time-period 1998–2018. The analysis reveals four groups of seasonality, which are described by distinct seasonal, geographical, and socio-economic profiles. Overall, the analysis supports multidisciplinary and synthetic research in the modeling of tourism research and promotes complex network analysis in the study of socio-economic systems, by providing insights into the physical conceptualization that the community detection based on the modularity optimization algorithm can enjoy to the real-world applications.


2020 ◽  
Vol 67 (6) ◽  
pp. 1134-1138 ◽  
Author(s):  
Zhongke Gao ◽  
Hongtao Wang ◽  
Weidong Dang ◽  
Yongqiang Li ◽  
Xiaolin Hong ◽  
...  

2019 ◽  
Vol 8 (9) ◽  
pp. 411 ◽  
Author(s):  
Tang ◽  
Deng ◽  
Huang ◽  
Liu ◽  
Chen

Ubiquitous trajectory data provides new opportunities for production and update of the road network. A number of methods have been proposed for road network construction and update based on trajectory data. However, existing methods were mainly focused on reconstruction of the existing road network, and the update of newly added roads was not given much attention. Besides, most of existing methods were designed for high sampling rate trajectory data, while the commonly available GPS trajectory data are usually low-quality data with noise, low sampling rates, and uneven spatial distributions. In this paper, we present an automatic method for detection and update of newly added roads based on the common low-quality trajectory data. First, additive changes (i.e., newly added roads) are detected using a point-to-segment matching algorithm. Then, the geometric structures of new roads are constructed based on a newly developed decomposition-combination map generation algorithm. Finally, the detected new roads are refined and combined with the original road network. Seven trajectory data were used to test the proposed method. Experiments show that the proposed method can successfully detect the additive changes and generate a road network which updates efficiently.


Sign in / Sign up

Export Citation Format

Share Document