A novel approach of intensified barnacles mating optimization for the mitigation of power system oscillations

Author(s):  
Ramesh Devarapalli ◽  
Biplab Bhattacharyya ◽  
Archana Kumari
Author(s):  
Kho Hie Kwee ◽  
Hardiansyah .

This paper addresses the design problem of robust H2 output feedback controller design for damping power system oscillations. Sufficient conditions for the existence of output feedback controllers with norm-bounded parameter uncertainties are given in terms of linear matrix inequalities (LMIs). Furthermore, a convex optimization problem with LMI constraints is formulated to design the output feedback controller which minimizes an upper bound on the worst-case H2 norm for a range of admissible plant perturbations. The technique is illustrated with applications to the design of stabilizer for a single-machine infinite-bus (SMIB) power system. The LMI based control ensures adequate damping for widely varying system operating.


2021 ◽  
pp. 1-13
Author(s):  
Pullabhatla Srikanth ◽  
Chiranjib Koley

In this work, different types of power system faults at various distances have been identified using a novel approach based on Discrete S-Transform clubbed with a Fuzzy decision box. The area under the maximum values of the dilated Gaussian windows in the time-frequency domain has been used as the critical input values to the fuzzy machine. In this work, IEEE-9 and IEEE-14 bus systems have been considered as the test systems for validating the proposed methodology for identification and localization of Power System Faults. The proposed algorithm can identify different power system faults like Asymmetrical Phase Faults, Asymmetrical Ground Faults, and Symmetrical Phase faults, occurring at 20% to 80% of the transmission line. The study reveals that the variation in distance and type of fault creates a change in time-frequency magnitude in a unique pattern. The method can identify and locate the faulted bus with high accuracy in comparison to SVM.


2018 ◽  
Vol 67 (2) ◽  
pp. 307-316 ◽  
Author(s):  
Hossein Zamani ◽  
Masoud Karimi-Ghartemani ◽  
Mohsen Mojiri

2014 ◽  
Vol 986-987 ◽  
pp. 1286-1290
Author(s):  
Jin Li ◽  
Ya Min Pi ◽  
Hui Yuan Yang

In this paper, the series converters of Distributed Power Flow Controller are the main object of study. Its mechanism of suppressing power system oscillations is studied by theoretical analysis and formula derivation, which relies on a single-machine infinite-bus power system, installed the series converters. Then based on the mechanism, adopting the classic PI control and the damping controller, designed the transient stability control loop for the series converters. Finally, simulations performed by PSCAD/EMTDC, the results show that DPFC device can effectively suppress oscillation and improve system stability.


Sign in / Sign up

Export Citation Format

Share Document