scholarly journals Back Cover: Computational Insight to Improve the Thermal Isomerisation Performance of Overcrowded Alkene-Based Molecular Motors through Structural Redesign (ChemPhysChem 21/2016)

ChemPhysChem ◽  
2016 ◽  
Vol 17 (21) ◽  
pp. 3577-3577
Author(s):  
Baswanth Oruganti ◽  
Jun Wang ◽  
Bo Durbeej
Author(s):  
Tim Oliver ◽  
Michelle Leonard ◽  
Juliet Lee ◽  
Akira Ishihara ◽  
Ken Jacobson

We are using video-enhanced light microscopy to investigate the pattern and magnitude of forces that fish keratocytes exert on flexible silicone rubber substrata. Our goal is a clearer understanding of the way molecular motors acting through the cytoskeleton co-ordinate their efforts into locomotion at cell velocities up to 1 μm/sec. Cell traction forces were previously observed as wrinkles(Fig.l) in strong silicone rubber films by Harris.(l) These forces are now measureable by two independant means.In the first of these assays, weakly crosslinked films are made, into which latex beads have been embedded.(Fig.2) These films report local cell-mediated traction forces as bead displacements in the plane of the film(Fig.3), which recover when the applied force is released. Calibrated flexible glass microneedles are then used to reproduce the translation of individual beads. We estimate the force required to distort these films to be 0.5 mdyne/μm of bead movement. Video-frame analysis of bead trajectories is providing data on the relative localisation, dissipation and kinetics of traction forces.


Sign in / Sign up

Export Citation Format

Share Document