Video-microscopic measurement of cell-substratum traction forces generated by locomoting keratocytes

Author(s):  
Tim Oliver ◽  
Michelle Leonard ◽  
Juliet Lee ◽  
Akira Ishihara ◽  
Ken Jacobson

We are using video-enhanced light microscopy to investigate the pattern and magnitude of forces that fish keratocytes exert on flexible silicone rubber substrata. Our goal is a clearer understanding of the way molecular motors acting through the cytoskeleton co-ordinate their efforts into locomotion at cell velocities up to 1 μm/sec. Cell traction forces were previously observed as wrinkles(Fig.l) in strong silicone rubber films by Harris.(l) These forces are now measureable by two independant means.In the first of these assays, weakly crosslinked films are made, into which latex beads have been embedded.(Fig.2) These films report local cell-mediated traction forces as bead displacements in the plane of the film(Fig.3), which recover when the applied force is released. Calibrated flexible glass microneedles are then used to reproduce the translation of individual beads. We estimate the force required to distort these films to be 0.5 mdyne/μm of bead movement. Video-frame analysis of bead trajectories is providing data on the relative localisation, dissipation and kinetics of traction forces.

Author(s):  
Tim Oliver ◽  
Akira Ishihara ◽  
Ken Jacobsen ◽  
Micah Dembo

In order to better understand the distribution of cell traction forces generated by rapidly locomoting cells, we have applied a mathematical analysis to our modified silicone rubber traction assay, based on the plane stress Green’s function of linear elasticity. To achieve this, we made crosslinked silicone rubber films into which we incorporated many more latex beads than previously possible (Figs. 1 and 6), using a modified airbrush. These films could be deformed by fish keratocytes, were virtually drift-free, and showed better than a 90% elastic recovery to micromanipulation (data not shown). Video images of cells locomoting on these films were recorded. From a pair of images representing the undisturbed and stressed states of the film, we recorded the cell’s outline and the associated displacements of bead centroids using Image-1 (Fig. 1). Next, using our own software, a mesh of quadrilaterals was plotted (Fig. 2) to represent the cell outline and to superimpose on the outline a traction density distribution. The net displacement of each bead in the film was calculated from centroid data and displayed with the mesh outline (Fig. 3).


2009 ◽  
Vol 96 (2) ◽  
pp. 729-738 ◽  
Author(s):  
Christopher A. Lemmon ◽  
Christopher S. Chen ◽  
Lewis H. Romer

2017 ◽  
Vol 28 (14) ◽  
pp. 1825-1832 ◽  
Author(s):  
Laetitia Kurzawa ◽  
Benoit Vianay ◽  
Fabrice Senger ◽  
Timothée Vignaud ◽  
Laurent Blanchoin ◽  
...  

Mechanical forces are key regulators of cell and tissue physiology. The basic molecular mechanism of fiber contraction by the sliding of actin filament upon myosin leading to conformational change has been known for decades. The regulation of force generation at the level of the cell, however, is still far from elucidated. Indeed, the magnitude of cell traction forces on the underlying extracellular matrix in culture is almost impossible to predict or experimentally control. The considerable variability in measurements of cell-traction forces indicates that they may not be the optimal readout to properly characterize cell contractile state and that a significant part of the contractile energy is not transferred to cell anchorage but instead is involved in actin network dynamics. Here we discuss the experimental, numerical, and biological parameters that may be responsible for the variability in traction force production. We argue that limiting these sources of variability and investigating the dissipation of mechanical work that occurs with structural rearrangements and the disengagement of force transmission is key for further understanding of cell mechanics.


2007 ◽  
Vol 64 (7) ◽  
pp. 509-518 ◽  
Author(s):  
Bin Li ◽  
Luke Xie ◽  
Zane C. Starr ◽  
Zhaochun Yang ◽  
Jeen-Shang Lin ◽  
...  

2006 ◽  
Vol 3 (4) ◽  
pp. 195-196
Author(s):  
B. Li ◽  
L. Xie ◽  
Z. C. Starr ◽  
Z. Yang ◽  
J. H-C. Wang

Sign in / Sign up

Export Citation Format

Share Document