Horseshoe chaos and subharmonic orbits in the nanoelectromechanical Casimir nonlinear oscillator

2012 ◽  
Vol 41 (6) ◽  
pp. 583-602 ◽  
Author(s):  
Michele Bonnin
2010 ◽  
Vol 6 (1) ◽  
Author(s):  
Themistoklis P. Sapsis ◽  
Alexander F. Vakakis

We study asymptotically the family of subharmonic responses of an essentially nonlinear oscillator forced by two closely spaced harmonics. By expressing the original oscillator in action-angle form, we reduce it to a dynamical system with three frequencies (two fast and one slow), which is amenable to a singular perturbation analysis. We then restrict the dynamics in neighborhoods of resonance manifolds and perform local bifurcation analysis of the forced subharmonic orbits. We find increased complexity in the dynamics as the frequency detuning between the forcing harmonics decreases or as the order of a secondary resonance condition increases. Moreover, we validate our asymptotic results by comparing them to direct numerical simulations of the original dynamical system. The method developed in this work can be applied to study the dynamics of strongly nonlinear (nonlinearizable) oscillators forced by multiple closely spaced harmonics; in addition, the formulation can be extended to the case of transient excitations.


2021 ◽  
Vol 31 (7) ◽  
pp. 073118
Author(s):  
V. P. Kruglov ◽  
D. A. Krylosova ◽  
I. R. Sataev ◽  
E. P. Seleznev ◽  
N. V. Stankevich

2021 ◽  
Vol 13 (5) ◽  
pp. 6331-6338
Author(s):  
Dong Guan ◽  
Guoqiang Xu ◽  
Xin Xia ◽  
Jiaqi Wang ◽  
Yunlong Zi

2014 ◽  
Vol 24 (05) ◽  
pp. 1450075 ◽  
Author(s):  
Albert C. J. Luo ◽  
Bo Yu

In this paper, bifurcation trees of periodic motions to chaos in a parametric oscillator with quadratic nonlinearity are investigated analytically as one of the simplest parametric oscillators. The analytical solutions of periodic motions in such a parametric oscillator are determined through the finite Fourier series, and the corresponding stability and bifurcation analyses for periodic motions are completed. Nonlinear behaviors of such periodic motions are characterized through frequency–amplitude curves of each harmonic term in the finite Fourier series solution. From bifurcation analysis of the analytical solutions, the bifurcation trees of periodic motion to chaos are obtained analytically, and numerical illustrations of periodic motions are presented through phase trajectories and analytical spectrum. This investigation shows period-1 motions exist in parametric nonlinear systems and the corresponding bifurcation trees to chaos exist as well.


2011 ◽  
Vol 3 (6) ◽  
pp. 689-701
Author(s):  
Malik Mamode

AbstractThe exact analytical expression of the period of a conservative nonlinear oscillator with a non-polynomial potential, is obtained. Such an oscillatory system corresponds to the transverse vibration of a particle attached to the center of a stretched elastic wire. The result is given in terms of elliptic functions and validates the approximate formulae derived from various approximation procedures as the harmonic balance method and the rational harmonic balance method usually implemented for solving such a nonlinear problem.


Sign in / Sign up

Export Citation Format

Share Document