scholarly journals Analysis of the Hand1 cell lineage reveals novel contributions to cardiovascular, neural crest, extra-embryonic, and lateral mesoderm derivatives

2010 ◽  
Vol 239 (11) ◽  
pp. 3086-3097 ◽  
Author(s):  
Ralston M. Barnes ◽  
Beth A. Firulli ◽  
Simon J. Conway ◽  
Joshua W. Vincentz ◽  
Anthony B. Firulli
1993 ◽  
Vol 24 (2) ◽  
pp. 146-161 ◽  
Author(s):  
Nicole M. Le Douarin ◽  
Elisabeth Dupin

Glia ◽  
2008 ◽  
Vol 56 (14) ◽  
pp. 1481-1490 ◽  
Author(s):  
Ashwin Woodhoo ◽  
Lukas Sommer

Development ◽  
2000 ◽  
Vol 127 (8) ◽  
pp. 1671-1679 ◽  
Author(s):  
Y. Chai ◽  
X. Jiang ◽  
Y. Ito ◽  
P. Bringas ◽  
J. Han ◽  
...  

Neural crest cells are multipotential stem cells that contribute extensively to vertebrate development and give rise to various cell and tissue types. Determination of the fate of mammalian neural crest has been inhibited by the lack of appropriate markers. Here, we make use of a two-component genetic system for indelibly marking the progeny of the cranial neural crest during tooth and mandible development. In the first mouse line, Cre recombinase is expressed under the control of the Wnt1 promoter as a transgene. Significantly, Wnt1 transgene expression is limited to the migrating neural crest cells that are derived from the dorsal CNS. The second mouse line, the ROSA26 conditional reporter (R26R), serves as a substrate for the Cre-mediated recombination. Using this two-component genetic system, we have systematically followed the migration and differentiation of the cranial neural crest (CNC) cells from E9.5 to 6 weeks after birth. Our results demonstrate, for the first time, that CNC cells contribute to the formation of condensed dental mesenchyme, dental papilla, odontoblasts, dentine matrix, pulp, cementum, periodontal ligaments, chondrocytes in Meckel's cartilage, mandible, the articulating disc of temporomandibular joint and branchial arch nerve ganglia. More importantly, there is a dynamic distribution of CNC- and non-CNC-derived cells during tooth and mandibular morphogenesis. These results are a first step towards a comprehensive understanding of neural crest cell migration and differentiation during mammalian craniofacial development. Furthermore, this transgenic model also provides a new tool for cell lineage analysis and genetic manipulation of neural-crest-derived components in normal and abnormal embryogenesis.


Development ◽  
1996 ◽  
Vol 122 (2) ◽  
pp. 473-480 ◽  
Author(s):  
A. Graham ◽  
A. Lumsden

The rhombomeres of the embryonic hindbrain display compartment properties, including cell lineage restriction, genetic definition and modular anatomical phenotype. Consistent with the idea that rhombomeres are autonomous developmental units, previous studies have shown that certain aspects of rhombomere phenotype are determined early, at the time of rhombomere formation. By contrast, the apoptotic depletion of neural crest from rhombomeres 3 and 5 is due to an interaction with their neighbouring rhombomeres, involving the signalling molecule Bmp4. In this paper, we have examined whether inter-rhombomere interactions control further aspects of rhombomere phenotype. We find that the expression of Krox-20 and the repression of follistatin in r3 is dependent upon neighbour interaction, whereas these genes are expressed autonomously in r5. We further demonstrate that modulation of Krox-20 and follistatin expression is not dependent on Bmp4, indicating the existence of multiple pathways of interaction between adjacent rhombomeres. We also show that, although some phenotypic aspects of r3 are controlled by neighbour interactions, the axial identity of the segment is intrinsically determined.


1990 ◽  
Vol 599 (1 Cell Lineages) ◽  
pp. 131-140 ◽  
Author(s):  
NICOLE M. DOUARIN
Keyword(s):  

Neuron ◽  
1989 ◽  
Vol 3 (1) ◽  
pp. 1-12 ◽  
Author(s):  
David J. Anderson

Sign in / Sign up

Export Citation Format

Share Document