lineage analysis
Recently Published Documents


TOTAL DOCUMENTS

260
(FIVE YEARS 37)

H-INDEX

46
(FIVE YEARS 2)

2021 ◽  
Author(s):  
Daniel Kalderon ◽  
David Melamed ◽  
Amy Reilein

A paper by Reilein et al (2017) presented several fundamental new insights into the behavior of adult Follicle Stem Cells (FSCs) in the Drosophila ovary, including evidence that each ovariole hosts a large number of FSCs (14-16) maintained by population asymmetry (Reilein et al., 2017), rather than just two FSCs, dividing with largely individually asymmetric outcomes, as originally proposed (Margolis and Spradling, 1995; Nystul and Spradling, 2007). Fadiga and Nystul (2019) contest some of these conclusions on the basis of their repetition of a multicolor lineage strategy used by Reilein et al (2017) and repetition of earlier single-color lineage analysis. Here we outline a number of shortcomings in the execution and interpretation of those experiments that, in our opinion, undermine their conclusions. The central issue of general relevance concerns the importance of comprehensively analyzing all stem cell lineages, independent of any pre-conceptions, in order to identify all constituents and capture heterogeneous behaviors.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Katja Rust ◽  
Lauren E. Byrnes ◽  
Kevin Shengyang Yu ◽  
Jason S. Park ◽  
Julie B. Sneddon ◽  
...  

Pathogens ◽  
2021 ◽  
Vol 10 (9) ◽  
pp. 1222
Author(s):  
Arnab Sarkar ◽  
Alok Kumar Chakrabarti ◽  
Shanta Dutta

Coronavirus disease 2019 (COVID-19) is considered as the most dreaded disease that has spread all over the world in the recent past. Despite its outbreak in December 2019–January 2020, a few continents and countries such as India started to experience a significant number of COVID-19-positive cases from March 2020. GISAID clade variation analysis in the period March 2020–February 2021 (period I) and March 2021–first week of April 2021 (period II) showed a rapid variation of SARS-CoV-2 in all continents and India over time. Studying the relationship of patient age or gender with viral clades in these two periods revealed that the population under 10 years of age was the least affected, whereas the 11–60-year-old population was the most affected, irrespective of patient gender and ethnicity. In the first wave, India registered quite a low number of COVID-19-positive cases/million people, but the scenario unexpectedly changed in the second wave, when even over 400,000 confirmed cases/day were reported. Lineage analysis in India showed the emergence of new SARS-CoV-2 variants, i.e., B.1.617.1 and B.1.617.2, during April–May 2021, which might be one of the key reasons for the sudden upsurge of confirmed cases/day. Furthermore, the emergence of the new variants contributed to the shift in infection spread by the G clade of SARS-CoV-2 from 46% in period II to 82.34% by the end of May 2021. Along with the management of the emergence of new variants, few factors viz., lockdown and vaccination were also accountable for controlling the upsurge of new COVID-19 cases throughout the country. Collectively, a comparative analysis of the scenario of the first wave with that of the second wave would suggest policymakers the way to prepare for better management of COVID-19 recurrence or its severity in India and other countries.


Author(s):  
Fabian P ◽  
Tseng KC ◽  
Smeeton J ◽  
Lancman JJ ◽  
Dong PDS ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Siteng Chen ◽  
Andrew L. Paek ◽  
Kathleen A. Lasick ◽  
Suvithanandhini Loganathan ◽  
Janet Roveda ◽  
...  

Background: Time-lapse microscopy has been widely used in biomedical experiments because it can visualize the molecular activities of living cells in real time. However, biomedical researchers are still conducting cell lineage analysis manually. Developing automatic lineage tracing algorithms is a challenging task. In the past two decades, deep neural networks (DNNs) became have shown outstanding performance on computer vision tasks. They can learn complex visual features, capture long-range temporal dependencies, and have the potential to be used for automatic cell lineage analysis. Methods: In this study, we propose a multi-task spatio-temporal feature based deep neural network for cell lineages analysis (Cell-STN). The Cell-STN extracts spatio-temporal features from microscopy image sequences by leveraging our convolutional long short-term memory based core block. And the proposed Cell-STN utilized a task specific network to predict the cell location, the mitosis event, and the apoptosis event in a multi-task manner. Results: We evaluated the Cell-STN on three in-house datasets (MCF7, U2OS, and HCT116) and one public dataset (Fluo-N2DL-HeLa). For cell tracking, we used peak-wise precision, track-wise precision, end-peak precision, and spatial distance as metrics. The overall results showed the Cell-STN models outperform other state-of-the-art cell trackers. For mitosis and apoptosis tasks, we used accuracy, F1-score, temporal distance, and spatial distance as metrics. The Cell-STN models achieved the highest performance on all datasets. Conclusion: This study presented a novel DNNs approach for cell lineage analysis in microscopy images. The Cell-STN showed outstanding performance on the four datasets. Additionally, the Cell-STN required minimal training data and can be adapted to new biological event detection tasks by appending task-specific layers. This algorithm has the potential to be used in real-world biomedical research.


Nature ◽  
2021 ◽  
Author(s):  
David Willnow ◽  
Uwe Benary ◽  
Anca Margineanu ◽  
Maria Lillina Vignola ◽  
Fabian Konrath ◽  
...  
Keyword(s):  

2021 ◽  
Vol 10 (28) ◽  
Author(s):  
John Mark Velasco ◽  
Piyawan Chinnawirotpisan ◽  
Maria Theresa Valderama ◽  
Khajohn Joonlasak ◽  
Wudtichai Manasatienkij ◽  
...  

Here, we report the complete genome sequences of 11 SARS-CoV-2 variants from the Philippines. Lineage analysis showed 3 B.1.1.7 and 8 B.1.351 sequences. One B.1.1.7 sequence contained two additional mutations, F318N and V320F, with V320F located in the receptor-binding domain of the S1 subunit.


2021 ◽  
Vol 15 ◽  
Author(s):  
Shigeyuki Esumi ◽  
Makoto Nasu ◽  
Takeshi Kawauchi ◽  
Koichiro Miike ◽  
Kento Morooka ◽  
...  

Intermediate progenitors of both excitatory and inhibitory neurons, which can replenish neurons in the adult brain, were recently identified. However, the generation of intermediate progenitors of GABAergic inhibitory neurons (IPGNs) has not been studied in detail. Here, we characterized the spatiotemporal distribution of IPGNs in mouse cerebral cortex. IPGNs generated neurons during both embryonic and postnatal stages, but the embryonic IPGNs were more proliferative. Our lineage tracing analyses showed that the embryonically proliferating IPGNs tended to localize to the superficial layers rather than the deep cortical layers at 3 weeks after birth. We also found that embryonic IPGNs derived from the medial and caudal ganglionic eminence (CGE) but more than half of the embryonic IPGNs were derived from the CGE and broadly distributed in the cerebral cortex. Taken together, our data indicate that the broadly located IPGNs during embryonic and postnatal stages exhibit a different proliferative property and layer distribution.


Development ◽  
2021 ◽  
pp. dev.193565
Author(s):  
Shashank Gandhi ◽  
Yuwei Li ◽  
Weiyi Tang ◽  
Jens B. Christensen ◽  
Hugo A. Urrutia ◽  
...  

An important strategy for establishing mechanisms of gene function during development is through mutation of individual genes and analysis of subsequent effects on cell behavior. Here, we present a single-plasmid approach for genome editing in chick embryos to study experimentally perturbed cells in an otherwise normal embryonic environment. To achieve this, we have engineered a plasmid that encodes Cas9 protein, gene-specific guide RNA (gRNA), and a fluorescent marker within the same construct. Using transfection- and electroporation-based approaches, we show that this construct can be used to perturb gene function in early embryos as well as human cell lines. Importantly, insertion of this cistronic construct into replication-incompetent avian (RIA) retroviruses allowed us to couple gene knockouts with long-term lineage analysis. We demonstrate the application of our newly-engineered constructs and viruses by perturbing β-catenin in vitro and Sox10, Pax6, and Pax7 in the neural crest, retina, neural tube and segmental plate in vivo, respectively. Together, this approach enables knocking out genes of interest in identifiable cells in living embryos and can be broadly applied to numerous genes in different embryonic tissues.


Sign in / Sign up

Export Citation Format

Share Document