Development
Latest Publications


TOTAL DOCUMENTS

18692
(FIVE YEARS 1298)

H-INDEX

227
(FIVE YEARS 25)

Published By The Company Of Biologists

1477-9129, 0950-1991

Development ◽  
2022 ◽  
Author(s):  
Vishnu Mishra ◽  
Archita Singh ◽  
Nidhi Gandhi ◽  
Shabari Sarkar Das ◽  
Sandeep Yadav ◽  
...  

Submergence-induced hypoxic condition negatively affects the plant growth and development, and causes early onset of senescence. Hypoxia alters the expression of a number of microRNAs (miRNAs). However, the molecular function of submergence stress-induced miRNAs in physiological or developmental changes and recovery remains poorly understood. Here we show that miR775 is an Arabidopsis thaliana-specific young and unique miRNA that possibly evolved non-canonically. miR775 post-transcriptionally regulates Galactosyltransferase (GALT9) and their expression is inversely affected at 24 hours of complete submergence stress. The overexpression of miR775 (miR775-Oe) confers enhanced recovery from submergence stress and reduced accumulation of RBOHD and ROS, in contrast to wild type and MIM775 Arabidopsis shoot. A similar recovery phenotype of galt9 mutant indicates the role of miR775-GALT9 module in post-submergence recovery. We predicted Golgi-localized GALT9 to be potentially involved in protein glycosylation. The altered expression of senescence-associated genes (SAG12, SAG29, and ORE1), ethylene signalling (EIN2 and EIN3) and ABA biosynthesis (NCED3) pathway genes in miR775-Oe, galt9 and MIM775 plants. Thus, our results indicate the role of miR775-GALT9 module in post-submergence recovery through a crosstalk with ethylene and ABA pathway.


Development ◽  
2022 ◽  
Author(s):  
Yuki Naitou ◽  
Go Nagamatsu ◽  
Nobuhiko Hamazaki ◽  
Kenjiro Shirane ◽  
Masafumi Hayashi ◽  
...  

In mammals, primordial germ cells (PGCs), the origin of the germ line, are specified from the epiblast at the posterior region where gastrulation simultaneously occurs, yet the functional relationship between PGC specification and gastrulation remains unclear. Here, we show that Ovol2, a transcription factor conserved across the animal kingdom, balances these major developmental processes by repressing the epithelial-to-mesenchymal transition (EMT) driving gastrulation and the upregulation of genes associated with PGC specification. Ovol2a, a splice variant encoding a repressor domain, directly regulates EMT-related genes and consequently induces re-acquisition of potential pluripotency during PGC specification, whereas Ovol2b, another splice variant missing the repressor domain, directly upregulates genes associated with PGC specification. Taken together, these results elucidate the molecular mechanism underlying allocation of the germ line among epiblast cells differentiating into somatic cells through gastrulation.


Development ◽  
2022 ◽  
Author(s):  
Alexandre Souchaud ◽  
Arthur Boutillon ◽  
Gaëlle Charron ◽  
Atef Asnacios ◽  
Camille Nous ◽  
...  

To investigate the role of mechanical constraints in morphogenesis and development, we develop a pipeline of techniques based on incompressible elastic sensors. These techniques combine the advantages of incompressible liquid droplets, which have been used as precise in situ shear stress sensors, and of elastic compressible beads, which are easier to tune and to use. Droplets of a polydimethylsiloxane (PDMS) mix, made fluorescent through specific covalent binding to a rhodamin dye, are produced by a microfluidics device. The elastomer rigidity after polymerization is adjusted to the tissue rigidity. Its mechanical properties are carefully calibrated in situ, for a sensor embedded in a cell aggregate submitted to uniaxial compression. Thelocal shear stress tensor is retrieved from the sensor shape, accurately reconstructed through an active contour method. In vitro, within cell aggregates, and in vivo, in the prechordal plate of the Zebrafish embryo during gastrulation,our pipeline of techniques demonstrates its efficiency to directly measure the three dimensional shear stress repartition within a tissue.


Development ◽  
2022 ◽  
Vol 149 (2) ◽  
Author(s):  
Tsuku Mogami

Development ◽  
2022 ◽  
Author(s):  
Naoki Takada ◽  
Masaki Takasugi ◽  
Yoshiki Nonaka ◽  
Tomonori Kamiya ◽  
Kazuaki Takemura ◽  
...  

Worldwide prevalence of obesity is associated with the increase of lifestyle-related diseases. The accumulation of intermuscular adipose tissue (IMAT) is considered a major problem whereby obesity leads to sarcopenia and metabolic disorders and thus is a promising target for treating these pathological conditions. However, whereas obesity-associated IMAT is suggested to originate from PDGFRα+ mesenchymal progenitors, processes underlying their adipogenesis remain largely unexplored. Here, we comprehensively investigated intra- and extracellular changes associated with these processes using single-cell RNA sequencing (scRNA-Seq) and mass spectrometry. Our scRNA-Seq analysis identified a small PDGFRα+ cell population in obese mice directed strongly toward adipogenesis. Proteomic analysis showed that the appearance of this cell population is accompanied by an increase in galectin-3 in interstitial environments, which was found to activate adipogenic PPARγ signals in PDGFRα+ cells. Moreover, IMAT formation during muscle regeneration was significantly suppressed in galectin-3 KO mice. Our findings, together with these multi-omics datasets, could unravel microenvironmental networks during muscle regeneration highlighting possible therapeutic targets against IMAT formation in obesity.


Development ◽  
2022 ◽  
Vol 149 (2) ◽  
Author(s):  
Stefan Galander

Mansi Srivastava is a John L. Loeb Associate Professor of the Natural Sciences at Harvard University. This year, she was awarded the Elizabeth D. Hay New Investigator Award by the Society of Developmental Biology, which recognizes new group leaders who have performed outstanding research in developmental biology during the early stages of their independent career. Mansi's research focusses on investigating wound response and stem cell biology during regeneration in an evolutionary context. We talked to Mansi to discover how she feels about receiving this award, and about her career and her activities outside of the lab.


Development ◽  
2022 ◽  
Author(s):  
Ling Yu ◽  
Yu-Lieh Lin ◽  
Mingquan Yan ◽  
Tao Li ◽  
Emily Y. Wu ◽  
...  

Amputation injuries in mammals are typically non-regenerative, however joint regeneration is stimulated by BMP9 treatment (Yu et al., 2019) indicating the presence of latent articular chondrocyte progenitor cells. BMP9 induces a battery of chondrogenic genes in vivo, and a similar response is observed in cultures of amputation wound cells. Extended cultures of BMP9 treated cells results in differentiation of hyaline cartilage and single cell RNAseq analysis identified wound fibroblasts as BMP9 responsive. This culture model was used to identify a BMP9 responsive adult fibroblast cell line and a culture strategy was developed to engineer hyaline cartilage for engraftment into an acutely damaged joint. Transplanted hyaline cartilage survived engraftment and maintained a hyaline cartilage phenotype but did not form mature articular cartilage. In addition, individual hypertrophic chondrocytes were identified in some samples indicating that the acute joint injury site can promote osteogenic progression of engrafted hyaline cartilage. The findings identify fibroblasts as a cell source for engineering articular cartilage and establishes a novel experimental strategy that bridges the gap between regeneration biology and regenerative medicine.


Development ◽  
2022 ◽  
Author(s):  
E. C. Kugler ◽  
J. Frost ◽  
V. Silva ◽  
K. Plant ◽  
K. Chhabria ◽  
...  

Zebrafish transgenic lines and light sheet fluorescence microscopy allow in-depth insights into three-dimensional vascular development in vivo. However, quantification of the zebrafish cerebral vasculature in 3D remains highly challenging. Here, we describe and test an image analysis workflow for 3D quantification of the total or regional zebrafish brain vasculature, called zebrafish vasculature quantification “ZVQ”. It provides the first landmark- or object-based vascular inter-sample registration of the zebrafish cerebral vasculature, producing Population Average Maps allowing rapid assessment of intra- and inter-group vascular anatomy. ZVQ also extracts a range of quantitative vascular parameters from a user-specified Region of Interest including volume, surface area, density, branching points, length, radius, and complexity. Application of ZVQ to thirteen experimental conditions, including embryonic development, pharmacological manipulations and morpholino induced gene knockdown, shows ZVQ is robust, allows extraction of biologically relevant information and quantification of vascular alteration, and can provide novel insights into vascular biology. To allow dissemination, the code for quantification, a graphical user interface, and workflow documentation are provided. Together, ZVQ provides the first open-source quantitative approach to assess the 3D cerebrovascular architecture in zebrafish.


Development ◽  
2022 ◽  
Author(s):  
Rémi Logeay ◽  
Charles Géminard ◽  
Patrice Lassus ◽  
Miriam Rodríguez-Vázquez ◽  
Diala Kantar ◽  
...  

Aggressive neoplastic growth can be initiated by a limited number of genetic alterations, such as the well-established cooperation between loss of cell architecture and hyperactive signaling pathways. However, our understanding of how these different alterations interact and influence each other remains very incomplete. Using Drosophila paradigms of imaginal wing disc epithelial growth, we have monitored the changes in Notch pathway activity according to the polarity status of cells (scrib mutant). We show that the scrib mutation impacts the direct transcriptional output of the Notch pathway, without altering the global distribution of Su(H), the Notch dedicated transcription factor. The Notch-dependent neoplasms require however, the action of a group of transcription factors, similar to those previously identified for Ras/scrib neoplasm (namely AP-1, Stat92E, Ftz-F1, and bZIP factors), further suggesting the importance of this transcription factor network during neoplastic growth. Finally our work highlights some Notch/scrib specificities, in particular the role of the PAR domain containing bZIP transcription factor and Notch direct target Pdp1 for neoplastic growth.


Development ◽  
2022 ◽  
Author(s):  
Jorge de-Carvalho ◽  
Sham Tlili ◽  
Lars Hufnagel ◽  
Timothy E. Saunders ◽  
Ivo A. Telley

Biological systems are highly complex, yet notably ordered structures can emerge. During syncytial stage development of the Drosophila melanogaster embryo, nuclei synchronously divide for nine cycles within a single cell, after which most of the nuclei reach the cell cortex. The arrival of nuclei to the cortex occurs with remarkable positional order, which is important for subsequent cellularisation and morphological transformations. Yet, the mechanical principles underlying this lattice-like positional order of nuclei remain untested. Here, utilising quantification of nuclei position and division orientation together with embryo explants we show that short-ranged repulsive interactions between microtubule asters ensure the regular distribution and maintenance of nuclear positions in the embryo. Such ordered nuclear positioning still occurs with the loss of actin caps and even the loss of the nuclei themselves; the asters can self-organise with similar distribution to nuclei in the wild-type embryo. The explant assay enabled us to deduce the nature of the mechanical interaction between pairs of nuclei. We used this to predict how the nuclear division axis orientation changes upon nucleus removal from the embryo cortex, which we confirmed in vivo with laser ablation. Overall, we show that short-ranged microtubule-mediated repulsive interactions between asters are important for ordering in the early Drosophila embryo and minimising positional irregularity.


Sign in / Sign up

Export Citation Format

Share Document