scholarly journals Timing of vegetation sampling does not influence associations between visual obstruction and turkey nest survival in a montane forest

2019 ◽  
Vol 9 (20) ◽  
pp. 11791-11798
Author(s):  
Michael J. Yarnall ◽  
Andrea R. Litt ◽  
Chadwick P. Lehman

The Condor ◽  
2021 ◽  
Vol 123 (1) ◽  
Author(s):  
Christopher R Anthony ◽  
Christian A Hagen ◽  
Katie M Dugger ◽  
R Dwayne Elmore

Abstract Temperature at fine spatial scales is an important driver of nest site selection for many avian species during the breeding season and can influence nest success. Sagebrush (Artemisia spp.) communities have areas with high levels of vegetation heterogeneity and high thermal variation; however, fire removes vegetation that provides protection from predators and extreme environmental conditions. To examine the influence of microclimates on Greater Sage-Grouse (Centrocercus urophasianus) nest site selection and nest success in a fire-affected landscape, we measured black bulb temperature (Tbb) and vegetation attributes (e.g., visual obstruction) at 3 spatial scales (i.e. nest bowl, microsite, and landscape) in unburned and burned areas. Nest bowls exhibited greater buffering of Tbb than both nearby microsites and the broader landscape. Notably, nest bowls were warmer in cold temperatures, and cooler in hot temperatures, than nearby microsites and the broader landscape, regardless of burn stage. Nest survival (NS) was higher for nests in unburned areas compared to nests in burned areas (unburned NS = 0.43, 95% confidence interval [CI]: 0.33–0.54; burned NS = 0.24, 95% CI: 0.10–0.46). The amount of bare ground was negatively associated with NS, but effects diminished as the amount of bare ground reached low levels. Shrub height and visual obstruction were positively associated with NS during the entire study period, whereas minimum Tbb had a weaker effect. Our findings demonstrate that thermoregulatory selection by Greater Sage-Grouse at nest sites had marginal effects on their NS. However, given that increases in vegetation structure (e.g., shrub height) provide thermal refuge and increase NS, vegetation remnants or regeneration in a post-fire landscape could be critical to Greater Sage-Grouse nesting ecology.



The Condor ◽  
2016 ◽  
Vol 118 (4) ◽  
pp. 728-746 ◽  
Author(s):  
Blake A. Grisham ◽  
Alixandra J. Godar ◽  
Clint W. Boal ◽  
David A. Haukos

Abstract The range of Lesser Prairie-Chickens (Tympanuchus pallidicinctus) spans 4 unique ecoregions along 2 distinct environmental gradients. The Sand Shinnery Oak Prairie ecoregion of the Southern High Plains of New Mexico and Texas is environmentally isolated, warmer, and more arid than the Short-Grass, Sand Sagebrush, and Mixed-Grass Prairie ecoregions in Colorado, Kansas, Oklahoma, and the northeast panhandle of Texas. Weather is known to influence Lesser Prairie-Chicken nest survival in the Sand Shinnery Oak Prairie ecoregion; regional variation may also influence nest microclimate and, ultimately, survival during incubation. To address this question, we placed data loggers adjacent to nests during incubation to quantify temperature and humidity distribution functions in 3 ecoregions. We developed a suite of a priori nest survival models that incorporated derived microclimate parameters and visual obstruction as covariates in Program MARK. We monitored 49 nests in Mixed-Grass, 22 nests in Sand Shinnery Oak, and 30 nests in Short-Grass ecoregions from 2010 to 2014. Our findings indicated that (1) the Sand Shinnery Oak Prairie ecoregion was hotter and drier during incubation than the Mixed- and Short-Grass ecoregions; (2) nest microclimate varied among years within ecoregions; (3) visual obstruction was positively associated with nest survival; but (4) daily nest survival probability decreased by 10% every half-hour when temperature was greater than 34°C and vapor pressure deficit was less than −23 mmHg during the day (about 0600–2100 hours). Our major finding confirmed microclimate thresholds for nest survival under natural conditions across the species' distribution, although Lesser Prairie-Chickens are more likely to experience microclimate conditions that result in nest failures in the Sand Shinnery Oak Prairie ecoregion. The species would benefit from identification of thermal landscapes and management actions that promote cooler, more humid nest microclimates.



Erdkunde ◽  
2009 ◽  
Vol 63 (4) ◽  
pp. 347-364 ◽  
Author(s):  
Claudia Dislich ◽  
Sven Günter ◽  
Jürgen Homeier ◽  
Boris Schröder ◽  
Andreas Huth




1999 ◽  
Author(s):  
Virginia Carter ◽  
H. Ruhl ◽  
N.B. Rybicki ◽  
J.T. Reel ◽  
P.T. Gammon


1999 ◽  
Author(s):  
Virginia Carter ◽  
J.T. Reel ◽  
N.B. Rybicki ◽  
H. Ruhl ◽  
P.T. Gammon ◽  
...  


2007 ◽  
Vol 71 (6) ◽  
pp. 1773-1783 ◽  
Author(s):  
BRENDAN J. MOYNAHAN ◽  
MARK S. LINDBERG ◽  
JAY J. ROTELLA ◽  
JACK WARD THOMAS




Oryx ◽  
2021 ◽  
pp. 1-9
Author(s):  
Johannes H. Fischer ◽  
Heiko U. Wittmer ◽  
Graeme A. Taylor ◽  
Igor Debski ◽  
Doug P. Armstrong

Abstract The population of the recently-described Whenua Hou diving petrel Pelecanoides whenuahouensis comprises c. 200 adults that all breed in a single 0.018 km2 colony in a dune system vulnerable to erosion. The species would therefore benefit from the establishment of a second breeding population through a translocation. However, given the small size of the source population, it is essential that translocations are informed by carefully targeted monitoring data. We therefore modelled nest survival at the remaining population in relation to potential drivers (distance to sea and burrow density of conspecifics and a competitor) across three breeding seasons with varying climatic conditions as a result of the southern oscillation cycle. We also documented breeding phenology and burrow attendance, and measured chicks, to generate growth curves. We estimated egg survival at 0.686, chick survival at 0.890, overall nest survival at 0.612, and found no indication that nest survival was affected by distance to sea or burrow density. Whenua Hou diving petrels laid eggs in mid October, eggs hatched in late November, and chicks fledged in mid January at c. 86% of adult weight. Burrow attendance (i.e. feeds) decreased from 0.94 to 0.65 visits per night as chicks approached fledging. Nest survival and breeding biology were largely consistent among years despite variation in climate. Nest survival estimates will facilitate predictions about future population trends and suitability of prospective translocation sites. Knowledge of breeding phenology will inform the timing of collection of live chicks for translocation, and patterns of burrow attendance combined with growth curves will structure hand-rearing protocols. A tuhinga whakarāpopoto (te reo Māori abstract) can be found in the Supplementary material.



Sign in / Sign up

Export Citation Format

Share Document