high plains
Recently Published Documents


TOTAL DOCUMENTS

1743
(FIVE YEARS 238)

H-INDEX

60
(FIVE YEARS 8)

Author(s):  

Abstract A new distribution map is provided for High Plains wheat mosaic emaravirus. Bunyavirales: Fimoviridae: Emaravirus. Main hosts: wheat (Triticum aestivum), maize (Zea mays). Information is given on the geographical distribution in Europe (Ukraine), North America (Canada, Alberta, United States, Colorado, Idaho, Kansas, Montana, Nebraska, New Mexico, North Dakota, Ohio, Oklahoma, Oregon, South Dakota, Texas, Utah, Washington, Wyoming), Oceania (Australia, New South Wales, Queensland, Victoria, Western Australia), South America (Argentina).


Author(s):  
W. James Grichar ◽  
Peter A. Dotray ◽  
Todd Baughman

Aims: To determine peanut response and weed control following the use of carfentrazone plus pyroxasulfone (C + P). Study Design:  Randomized complete block design with 3-4 reps depending on location. Place and Duration of Study: Studies were conducted during the 2015 and 2016 growing seasons in south Texas near Yoakum (29.276o N, 97.123o W), the High Plains of Texas near Lamesa (32.769o N, 101.977o W) or Brownfield (33.104o N, 102.161o W), and southwestern Oklahoma near Ft. Cobb (35.091o N, 98.275o W). Methodology: Plots were infested with naturally occurring weed populations. Pendimethalin was applied either preplant incorporated (PPI) or preemergence (PRE). Early postemergence (EPOST) applications varied according to weather conditions and peanut growth at each location. Postemergence (POST) treatments were applied 26 to 58 days after planting. Weed control and peanut stunting were visually estimated on a scale of 0 to 100 (0 indicating no control or plant death and 100 indicating complete control or plant death). Results: Peanut stunting with C + P was only noted at the High Plains and Oklahoma locations in 2015 but not 2016. Urochloa texana (Buckl.) control with C + P (PRE) varied from 75 to 93%. POST applications provided inconsistent control.  Amaranthus palmeri S. Wats. control with C + P (PRE) was at least 78% season-long while POST applications were inconsistent (24 to 100%).  Pendimethalin plus C + P controlled Cucumis melo L. var. Dudaim Naud. at least 80% late-season. Ipomoea hederacea Jacq. control was excellent season-long (> 80%) in 2015 but poor (< 60%) in 2016.  Reduced peanut yields were noted with C + P in Oklahoma in 2015 to excessive season-long injury.    Conclusion: The premix of C + P has potential for use in peanut especially for control of many small-seeded annual broadleaf weeds that continue to plague many peanut growers across the southwest.  For effective broad-spectrum annual weed control season-long, the addition of pendimethalin to PRE applications will be required.


2021 ◽  
Author(s):  
Parisa Sarzaeim ◽  
Wenqi Ou ◽  
Luciano Alves de Oliveira ◽  
Francisco Munoz-Arriola

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Marangely Gonzalez Cruz ◽  
E. Annette Hernandez ◽  
Venkatesh Uddameri

AbstractIntensification of droughts in agricultural areas threaten global food security. The impacts of drought stresses vary widely across a region, not only due to climate variability but also due to heterogeneous soil and groundwater buffering capacities which protect against droughts. An innovative drought vulnerability index was developed by reconciling the negative effects of drought stresses against the robustness offered by hydrologic buffers. Indicators for climate stresses, soil and groundwater buffering capacities were defined using physical principles and integrated using a multi-criteria decision making (MCDM) framework. The framework was applied to delineate drought vulnerability of agricultural production systems and evaluate current cropping choices across the High Plains region of the US that is underlain by the Ogallala Aquifer. Current crop growth choices appeared to be compatible with the intrinsic drought vulnerabilities with cotton and sorghum grown in higher vulnerability areas and corn and soybean produced in areas with lower vulnerability. Nearly 50% of the aquifer region fell in the transition zone exhibiting medium to high vulnerabilities warranting the need for better water management to adapt to a changing climate.


2021 ◽  
Vol 310 ◽  
pp. 108649
Author(s):  
Yong Chen ◽  
Gary W. Marek ◽  
Thomas H. Marek ◽  
Dana O. Porter ◽  
David K. Brauer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document