nest site
Recently Published Documents


TOTAL DOCUMENTS

1575
(FIVE YEARS 205)

H-INDEX

66
(FIVE YEARS 5)

2022 ◽  
Vol 505 ◽  
pp. 119928
Author(s):  
Michael D. Craig ◽  
Tony Kirkby ◽  
Vicki L. Stokes ◽  
Michael Renton ◽  
Richard J. Hobbs

Author(s):  
S.J. Kell ◽  
N. Rollinson ◽  
R.J. Brooks ◽  
Jacqueline Litzgus

Many oviparous reptiles nest in aggregations and with temporal synchrony. We hypothesized that these traits reflect attraction by conspecifics rather than limiting suitable habitat. We quantified whether Painted Turtles (Chrysemys picta (Schneider, 1783)) in Algonquin Park, Ontario, were nesting communally, identified cues females used to select nest sites, and tested whether hatching success was higher in spatially-clustered nests. We found that nests were closer to one another than expected by chance (i.e., were clustered), but that individual nest site selection was only weakly influenced by micro-habitat characteristics. Survival of clustered nests (49%) was not significantly higher than that of solitary nests (39%). When turtle models were placed on the nesting embankment, females nested most often with the highest density of models. Given that reproductive lifespan is the major axis of fitness and that there was little benefit to nest survival in clustered nests, we suggest that clustering is related to females cueing to conspecific nests to expedite the nesting process and gain a good-quality nest site (chosen by the first nesting female in the cluster) while investing little energy in nest-site selection. This strategy may reduce time spent on land, thereby minimizing chances of dehydration, temperature stress, and adult depredation.


Insects ◽  
2021 ◽  
Vol 13 (1) ◽  
pp. 30
Author(s):  
Clémence Rose ◽  
Andreas Schramm ◽  
John Irish ◽  
Trine Bilde ◽  
Tharina L. Bird

An animals’ habitat defines the resources that are available for its use, such as host plants or food sources, and the use of these resources are critical for optimizing fitness. Spiders are abundant in all terrestrial habitats and are often associated with vegetation, which may provide structure for anchoring capture webs, attract insect prey, or provide protective function. Social spiders construct sedentary communal silk nests on host plants, but we know little about whether and how they make nest-site decisions. We examined host plant use in relation to host plant availability in the social spider Stegodyphus dumicola Pocock, 1898 (Eresidae) across different arid biomes in Namibia and analysed the role of host plant characteristics (height, spines, scent, sturdiness) on nest occurrence. Host plant communities and densities differed between locations. Spider nests were relatively more abundant on Acacia spp., Boscia foetida, Combretum spp., Dichrostachys cinerea, Parkinsonia africana, Tarchonanthus camphoratus, and Ziziphus mucronatus, and nests survived longer on preferred plant genera Acacia, Boscia and Combretum. Spider nests were relatively more abundant on plants higher than 2 m, and on plants with thorns and with a rigid structure. Our results suggest that spiders display differential use of host plant species, and that characteristics such as rigidity and thorns confer benefits such as protection from browsing animals.


Oryx ◽  
2021 ◽  
pp. 1-9
Author(s):  
Sayam U. Chowdhury ◽  
Mohammod Foysal ◽  
Nazim Uddin Khan

Abstract Pallas's fish eagle Haliaeetus leucoryphus was recategorized from Vulnerable to Endangered on the IUCN Red List in 2017 because of evidence that there is only a single population, which is declining as a result of continuous, widespread loss and degradation of freshwater wetlands. To determine the species’ status in Bangladesh, we conducted a large-scale community-based interview survey in north-east Bangladesh in 2017–2020. We also examined nest site habitat characteristics through field surveys and remotely sensed data. We conducted a total of 955 interviews in an area of 4,150 km2, through which we were able to determine the presence of 53 breeding pairs at a mean density of 1.2 nests per 100 km2. There was a higher nest density (3.7–4.8 nests per 100 km2) in some locations, which we identify as priority conservation areas. The majority of nests (62.2%) were close together and on tall trees with an open canopy structure. Nests were located within or close to (< 100 m) human settlements, and within 500 m of wetlands and rivers. Felling of nest trees, removal of nests by local people and loss of permanent wetlands (14.6% during 2010–2020) appeared to be the main threats. High nesting density in our study area suggests that the freshwater wetlands in north-east Bangladesh possibly hold the largest population of Pallas's fish eagle globally.


2021 ◽  
Vol 9 ◽  
Author(s):  
Nicholas E. Topping ◽  
Nicole Valenzuela

Oviparous animals, such as turtles, lay eggs whose success or demise depends on environmental conditions that influence offspring phenotype (morphology, physiology, and in many reptiles, also sex determination), growth, and survival, while in the nest and post-hatching. Consequently, because turtles display little parental care, maternal provisioning of the eggs and female nesting behavior are under strong selection. But the consequences of when and where nests are laid are affected by anthropogenic habitat disturbances that alter suitable nesting areas, expose eggs to contaminants in the wild, and modify the thermal and hydric environment experienced by developing embryos, thus impacting hatchling survival and the sexual fate of taxa with temperature-dependent sex determination (TSD) and genotypic sex determination (GSD). Indeed, global and local environmental change influences air, water, and soil temperature and moisture, which impact basking behavior, egg development, and conditions within the nest, potentially rendering current nesting strategies maladaptive as offspring mortality increases and TSD sex ratios become drastically skewed. Endocrine disruptors can sex reverse TSD and GSD embryos alike. Adapting to these challenges depends on genetic variation, and little to no heritability has been detected for nest-site behavior. However, modest heritability in threshold temperature (above and below which females or males develop in TSD taxa, respectively) exists in the wild, as well as interpopulation differences in the reaction norm of sex ratio to temperature, and potentially also in the expression of gene regulators of sexual development. If this variation reflects additive genetic components, some adaptation might be expected, provided that the pace of environmental change does not exceed the rate of evolution. Research remains urgently needed to fill current gaps in our understanding of the ecology and evolution of nest-site choice and its adaptive potential, integrating across multiple levels of organization.


Author(s):  
Andreas Otterbeck ◽  
Andreas Lindén ◽  
Ruslan Gunko ◽  
Eeva Ylinen ◽  
Patrik Byholm

AbstractPhilopatry and monogamy are conventionally viewed as strategies for improving fitness. Many philopatric and monogamous species have, however, been shown to perform breeding dispersal—an exchange of territory (and often also partner) between two breeding seasons. The adaptiveness of breeding dispersal remains controversial, as data remain scarce and sporadic. For the Northern Goshawk, a typically highly philopatric and monogamous forest raptor, pairs breeding in barren forest landscapes produce fewer fledglings than pairs breeding in more productive landscapes. Using data on Finnish breeding female Goshawks (Accipiter gentilis) during 1999–2016, we tested the hypotheses that: (1) breeding dispersal is more likely at barren territories, (2) dispersing females move to less barren territories, and (3) breeding dispersal improves the survival of young. About 29% of the female Goshawks in our study performed breeding dispersal, which contrasts to philopatry and suggest that site and partner fidelities show large variation within the species’ breeding range. We found no evidence that territorial landscape barrenness (proxy on habitat quality) affects the probability of breeding dispersal. However, females that dispersed upgraded to less barren territories. Nevertheless, there were no subsequent effects of breeding dispersal on reproductive performance, suggesting no obvious difference in the capability of rearing young at either site. Although dispersal events were directed to less barren habitats, we suggest that female dispersal is not driven by the pursue for more prospersous habitats, rather that those females are forced to move, for whatever reason. In addition to other observed reasons such as female–female competition for mates and loss of the original mate, intense logging of mature forests lowering local food availability and restricting nest site availability were likely a partial cause of increased breeding dispersal.


2021 ◽  
Vol 9 ◽  
Author(s):  
Theja Abayarathna ◽  
Jonathan K. Webb

In many lizards, a mother’s choice of nest site can influence the thermal and hydric regimes experienced by developing embryos, which in turn can influence key traits putatively linked to fitness, such as body size, learning ability, and locomotor performance. Future increases in nest temperatures predicted under climate warming could potentially influence hatchling traits in many reptiles. In this study, we investigated whether future nest temperatures affected the thermal preferences of hatchling velvet geckos, Amalosia lesueurii. We incubated eggs under two fluctuating temperature treatments; the warm treatment mimicked temperatures of currently used communal nests (mean = 24.3°C, range 18.4–31.1°C), while the hot treatment (mean = 28.9°C, range 20.7–38.1°C) mimicked potential temperatures likely to occur during hot summers. We placed hatchlings inside a thermal gradient and measured their preferred body temperatures (Tbs) after they had access to food, and after they had fasted for 5 days. We found that hatchling feeding status significantly affected their preferred Tbs. Hatchlings maintained higher Tbs after feeding (mean = 30.6°C, interquartile range = 29.6–32.0°C) than when they had fasted for 5 d (mean = 25.8°C, interquartile range = 24.7–26.9°C). Surprisingly, we found that incubation temperatures did not influence the thermal preferences of hatchling velvet geckos. Hence, predicting how future changes in nest temperatures will affect reptiles will require a better understanding of how incubation and post-hatchling environments shape hatchling phenotypes.


2021 ◽  
Author(s):  
◽  
Johannes Fischer

<p>Procellariiformes is a diverse order of seabirds under considerable pressure from onshore and offshore threats. New Zealand hosts a large and diverse community of Procellariiformes, but many species are at risk of extinction. In this thesis, I aim to provide an overview of threats and conservation actions of New Zealand’s Procellariiformes in general, and an assessment of the remaining terrestrial threats to the South Georgian Diving Petrel (Pelecanoides georgicus; SGDP), a Nationally Critical Procellariiform species restricted to Codfish Island (Whenua Hou), post invasive species eradication efforts in particular. I reviewed 145 references and assessed 14 current threats and 13 conservation actions of New Zealand’s Procellariiformes (n = 48) in a meta-analysis. I then assessed the terrestrial threats to the SGDP by analysing the influence of five physical, three competition, and three plant variables on nest-site selection using an information theoretic approach. Furthermore, I assessed the impacts of interspecific interactions at 20 SGDP burrows using remote cameras. Finally, to address species limits within the SGDP complex, I measured phenotypic differences (10 biometric and eight plumage characters) in 80 live birds and 53 study skins, as conservation prioritisation relies on accurate taxonomic classification. The results from the meta-analysis revealed that New Zealand’s Procellariiformes are at risk from various threats (x̅= 5.50 ± 0.34), but species also receive aid from several conservation actions (x̅= 7.19 ± 0.33). Results from a logistic regression showed that smaller species are more threatened onshore than offshore. The majority of the conservation actions appear in place where needed. However, habitat management, native predator control and the mitigation of risks associated with environmental stochasticity may need improvement. Analysis of SGDP nest-site selection showed dependency on mobile, steep, seaward-facing foredunes. Invasive plant species, the presence of conspecifics, or the presence of other seabird species did not influence SGDP nest-site selection. Assessment of interspecific interactions at SGDP burrows showed seven species occurring at burrows, but only Common Diving Petrels (P. urinatrix; CDP) interfered with SGDP breeding success. Assessment of phenotypic differences within the SGDP revealed that the New Zealand SGDP population differs in five biometric and three plumage characters from all other populations and warrants species status based on a species delimitation test with quantitative criteria. I propose to name this Critically Endangered species Pelecanoides taylorii sp. nov. These findings indicate that P. taylorii is of considerable conservation concern and additional measures, even after successful eradication of invasive species, may be required to safeguard this species. Based on the habitat preference, stochastic events, such as storms and storm surges, appear a major threat to P. taylorii. The assessed interspecific interactions at nest-sites, indicate competition with CDPs to be a minor threat. I propose a translocation as a potential strategy to relieve the pressure on P. taylorii, but further monitoring and research is needed to enable the implementation of such a conservation strategy.</p>


2021 ◽  
Author(s):  
◽  
Johannes Fischer

<p>Procellariiformes is a diverse order of seabirds under considerable pressure from onshore and offshore threats. New Zealand hosts a large and diverse community of Procellariiformes, but many species are at risk of extinction. In this thesis, I aim to provide an overview of threats and conservation actions of New Zealand’s Procellariiformes in general, and an assessment of the remaining terrestrial threats to the South Georgian Diving Petrel (Pelecanoides georgicus; SGDP), a Nationally Critical Procellariiform species restricted to Codfish Island (Whenua Hou), post invasive species eradication efforts in particular. I reviewed 145 references and assessed 14 current threats and 13 conservation actions of New Zealand’s Procellariiformes (n = 48) in a meta-analysis. I then assessed the terrestrial threats to the SGDP by analysing the influence of five physical, three competition, and three plant variables on nest-site selection using an information theoretic approach. Furthermore, I assessed the impacts of interspecific interactions at 20 SGDP burrows using remote cameras. Finally, to address species limits within the SGDP complex, I measured phenotypic differences (10 biometric and eight plumage characters) in 80 live birds and 53 study skins, as conservation prioritisation relies on accurate taxonomic classification. The results from the meta-analysis revealed that New Zealand’s Procellariiformes are at risk from various threats (x̅= 5.50 ± 0.34), but species also receive aid from several conservation actions (x̅= 7.19 ± 0.33). Results from a logistic regression showed that smaller species are more threatened onshore than offshore. The majority of the conservation actions appear in place where needed. However, habitat management, native predator control and the mitigation of risks associated with environmental stochasticity may need improvement. Analysis of SGDP nest-site selection showed dependency on mobile, steep, seaward-facing foredunes. Invasive plant species, the presence of conspecifics, or the presence of other seabird species did not influence SGDP nest-site selection. Assessment of interspecific interactions at SGDP burrows showed seven species occurring at burrows, but only Common Diving Petrels (P. urinatrix; CDP) interfered with SGDP breeding success. Assessment of phenotypic differences within the SGDP revealed that the New Zealand SGDP population differs in five biometric and three plumage characters from all other populations and warrants species status based on a species delimitation test with quantitative criteria. I propose to name this Critically Endangered species Pelecanoides taylorii sp. nov. These findings indicate that P. taylorii is of considerable conservation concern and additional measures, even after successful eradication of invasive species, may be required to safeguard this species. Based on the habitat preference, stochastic events, such as storms and storm surges, appear a major threat to P. taylorii. The assessed interspecific interactions at nest-sites, indicate competition with CDPs to be a minor threat. I propose a translocation as a potential strategy to relieve the pressure on P. taylorii, but further monitoring and research is needed to enable the implementation of such a conservation strategy.</p>


Sign in / Sign up

Export Citation Format

Share Document