burned areas
Recently Published Documents


TOTAL DOCUMENTS

474
(FIVE YEARS 213)

H-INDEX

37
(FIVE YEARS 6)

2022 ◽  
Vol 14 (2) ◽  
pp. 823
Author(s):  
Mendelson Lima ◽  
Dthenifer Cordeiro Santana ◽  
Ismael Cavalcante Maciel Junior ◽  
Patricia Monique Crivelari da Costa ◽  
Pedro Paulo Gomes de Oliveira ◽  
...  

The Brazilian government intends to complete the paving of the BR-319 highway, which connects Porto Velho in the deforestation arc region with Manaus in the middle of the Amazon Forest. This paving is being planned despite environmental legislation, and there is concern that its effectiveness will cause additional deforestation, threatening large portions of forest, conservation units (CUs), and indigenous lands (ILs) in the surrounding areas. In this study, we evaluated environmental degradation along the BR-319 highway from 2008 to 2020 and verified whether highway maintenance has contributed to deforestation. For this purpose, we created a 20 km buffer adjacent to the BR-319 highway and evaluated variables extracted from remote sensing information between 2008 and 2020. Fire foci, burned areas, and rainfall data were used to calculate a drought index using statistical tests for a time series. Furthermore, these were related to data on deforestation, CUs, and ILs using principal component analysis and Pearson’s correlation. Our results showed that 743 km2 of forest was deforested during the period evaluated, most of which occurred in the last four years. A total of 16,472 fire foci were identified. Both deforestation and fire foci occurred mainly outside the CUs and ILs. The most affected areas were close to capital cities, and after resuming road maintenance in 2015, deforestation increased outside the capital cities. Current government policy for Amazon occupation promotes deforestation and will compromise Brazil’s climate goals of reducing greenhouse gas (GHG) emissions and deforestation.


2022 ◽  
Vol 14 (2) ◽  
pp. 338
Author(s):  
Carlos Antonio da Silva Junior ◽  
Mendelson Lima ◽  
Paulo Eduardo Teodoro ◽  
José Francisco de Oliveira-Júnior ◽  
Fernando Saragosa Rossi ◽  
...  

The Amazon Basin is undergoing extensive environmental degradation as a result of deforestation and the rising occurrence of fires. The degradation caused by fires is exacerbated by the occurrence of anomalously dry periods in the Amazon Basin. The objectives of this study were: (i) to quantify the extent of areas that burned between 2001 and 2019 and relate them to extreme drought events in a 20-year time series; (ii) to identify the proportion of countries comprising the Amazon Basin in which environmental degradation was strongly observed, relating the spatial patterns of fires; and (iii) examine the Amazon Basin carbon balance following the occurrence of fires. To this end, the following variables were evaluated by remote sensing between 2001 and 2019: gross primary production, standardized precipitation index, burned areas, fire foci, and carbon emissions. During the examined period, fires affected 23.78% of the total Amazon Basin. Brazil had the largest affected area (220,087 fire foci, 773,360 km2 burned area, 54.7% of the total burned in the Amazon Basin), followed by Bolivia (102,499 fire foci, 571,250 km2 burned area, 40.4%). Overall, these fires have not only affected forests in agricultural frontier areas (76.91%), but also those in indigenous lands (17.16%) and conservation units (5.93%), which are recognized as biodiversity conservation areas. During the study period, the forest absorbed 1,092,037 Mg of C, but emitted 2908 Tg of C, which is 2.66-fold greater than the C absorbed, thereby compromising the role of the forest in acting as a C sink. Our findings show that environmental degradation caused by fires is related to the occurrence of dry periods in the Amazon Basin.


Author(s):  
Shyam Kumar Thapa ◽  
Joost de Jong ◽  
Anouschka Hof ◽  
Naresh Subedi ◽  
Laxmi Joshi ◽  
...  

Indiscriminate fire is rampant throughout subtropical South and Southeast Asian grasslands. However, very little is known about the role of fire and pyric herbivory on the functioning of highly productive subtropical monsoon grasslands lying within Cwa-climatic region. We collected grass samples from 60 m x 60 m plots and determined vegetation physical and chemical properties at regular 30-day intervals from April to July 2020, starting from 30 days after fire to assess post-fire regrowth forage quality. We counted pellet groups for the same four months from 2 m x 2 m quadrats that were permanently marked with pegs along the diagonal of each 60 m x 60 m plot to estimate grazing intensity to the progression of post-fire regrowth. We observed strong and significant reductions in crude protein (mean value 9.1 to 4.1 [55% decrease]) and phosphorus (mean value 0.2 to 0.11 [45% decrease]) in forage collected during different time intervals i.e., from 30 days to 120 days after fire. Mesofaunal deer utilised the burned areas extensively for a short period, i.e., up to two months after fire when the burned areas contained short grasses with a higher level of crude protein and phosphorus. Grazing intensity of chital (Axis axis) to post-fire regrowth differed significantly over time since fire, with higher intensity of use at 30 days after fire. Grazing intensity of swamp deer (Rucervus duvaucelii) did not differ significantly until 90 days after fire, however, decreased significantly after 90 days since fire. Large-scale indiscriminate single event fires thus may not fulfil nutritional requirements of all species in mesofaunal deer community in these subtropical monsoon grasslands. We recommend for a spatio-temporal manipulation of fire to reinforce grazing feedback and to yield for the longest possible period a reasonably good food supply for the conservation of mesofaunal deer.


Agronomy ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 129
Author(s):  
Ivana Šestak ◽  
Paulo Pereira ◽  
Leon Josip Telak ◽  
Aleksandra Perčin ◽  
Iva Hrelja ◽  
...  

This paper aims to evaluate the ability of VNIR proximal soil spectroscopy to determine post-fire soil chemical properties and discriminate fire severity based on soil spectra. A total of 120 topsoil samples (0–3 cm) were taken from 6 ha of unburned (control (CON)) and burned areas (moderate fire severity (MS) and high fire severity (HS)) in Mediterranean Croatia within one year after the wildfire. Partial least squares regression (PLSR) and an artificial neural network (ANN) were used to build calibration models of soil pH, electrical conductivity (EC), CaCO3, plant-available phosphorus (P2O5) and potassium (K2O), soil organic carbon (SOC), exchangeable calcium (exCa), magnesium (exMg), potassium (exK), sodium (exNa), and cation exchange capacity (CEC), based on soil reflectance data. In terms of fire severity, CON samples exhibited higher average reflectance than MS and HS samples due to their lower SOC content. The PCA results pointed to the significance of the NIR part of the spectrum for extracting the variance in reflectance data and differentiation between the CON and burned area (MS and HS). DA generated 74.2% correctly classified soil spectral samples according to the fire severity. Both PLSR and ANN calibration techniques showed sensitivity to extract information from soil features based on hyperspectral reflectance, most successfully for the prediction of SOC, P2O5, exCa, exK, and CEC. This study confirms the usefulness of soil spectroscopy for fast screening and a better understanding of soil chemical properties in post-fire periods.


Fire ◽  
2022 ◽  
Vol 5 (1) ◽  
pp. 4
Author(s):  
Oswaldo Maillard ◽  
Sebastian K. Herzog ◽  
Rodrigo W. Soria-Auza ◽  
Roberto Vides-Almonacid

Key Biodiversity Areas (KBAs) are sites that contribute significantly to the protection of the planet’s biodiversity. In this study, we evaluated the annual burned areas and the intensity of the fires that affected Bolivia and its 58 KBAs (23.3 million ha) over the last 20 years (2001–2020). In particular, we analyzed the impact of wildfires on the distribution of Bolivian birds at the levels of overall species richness, endemic species and threatened species (Critically Endangered, Endangered, Vulnerable). We found that at the KBA level, the cumulative area of wildfires was 21.6 million ha, while the absolute area impacted was 5.6 million ha. The KBAs most affected by the wildfires are located in the departments of Beni and Santa Cruz; mainly in the KBAs Área Natural de Manejo Integrado San Matías, Oeste del río Mamoré, Este del río Mamoré, Noel Kempff Mercado and Área Natural de Manejo Integrado Otuquis. The wildfires impacted the distribution of 54 threatened species and 15 endemic species in the KBAs. Based on the results of this study, it is a priority to communicate to Bolivian government authorities the importance of KBAs as a strategy for the conservation of the country’s biodiversity and the threats resulting from anthropogenic fires.


2021 ◽  
Vol 14 (6) ◽  
pp. 3225
Author(s):  
Juarez Antonio da Silva Júnior ◽  
Ubiratan Joaquim da Silva Júnior ◽  
Admilson Da Penha Pacheco

A disponibilidade gratuita de dados de sensoriamento remoto em áreas atingidas por incêndios florestais em escala global oferece a oportunidade de geração sistemática de produtos terrestres de média resolução espacial, porém as conhecidas limitações de precisão é objeto de estudo em todo o mundo. Este artigo tem como objetivo analisar a acurácia da detecção de áreas queimadas utilizando o classificador Random Forest (RF) por meio de uma cena do sensor Radiômetro de Imagem Infravermelho Visível (VIIRS) (1Km) em quatro pontos da savana brasileira. Os resultados foram validados através dos produtos de referência espacial de áreas queimadas: Aq30m, Fire_cci e MCD64A1 por meio de uma abordagem estratificada possibilitando a amostragem dos dados no espaço e tempo. Os modelos de RF avaliados com seus parâmetros de entrada, em que, incluiu-se 400 árvores e um atributo, fornecendo uma taxa de erro abaixo de 4%. Os resultados mostraram que o mapeamento validado com o produto Aq30m apresentou importantes estimativas de Coeficiente de Sorensen-Dice enquanto a validação realizada entre os modelos globais, o MCD64A1 mostrou-se com maior exatidão (>50%) principalmente em feições de áreas queimadas de grandes proporções (> 200Km²). Em particular, a análise sugere que a validação de produtos de área queimada sempre deve estar ligada ao tempo mínimo da data dos dados de validação e o tamanho da área atingida pelo fogo. Os resultados mostram que esta abordagem é muito útil para ser usado para determinar áreas de floresta queimada.      Accuracy analysis for mapping burnt areas using a 1Km VIIRS scene and Random Forest classification A B S T R A C TThe availability of remote sensing data with medium spatial resolution has offered several mapping possibilities for areas affected by forest fires on the Earth's surface. In this context, the analysis of sensor spatial accuracy limitations has been the subject of global research. The objective of this study was to analyze the mapping accuracy of the VIIRS sensor on board the NOAA satellite, using the Random Forest (RF) classifier for the detection of burned areas, in four points of the Chapada dos Veadeiros National Park - Goiás, inserted in the Brazilian savanna. The methodology consisted in validating the classification using the Sorensen-Dice coefficient (SD) in a stratified approach, using as reference the products: Aq30m, Fire_cci and MCD64A1. As a result, the RF models, included 400 trees and one attribute, with an error of less than 4%. Among the global models, the MCD64A1 presented a significant accuracy, greater than 50%, especially in features of burned areas greater than 200Km². Thus, the data suggest that the quality of accuracy of the validation process of mapping products for burned areas is associated with the minimum time interval of availability of validation data and the size of the area affected by fire. Based on this, the results show effectiveness in using the RF algorithm on medium spatial resolution images for fire detection in seasonally dry forests, such as the Cerrado.Keywords: Cerrado, fires, Random Forest.


Author(s):  
E. V. Shemyakin ◽  
◽  
L. G. Vartapetov ◽  
A. G. Larionov ◽  
◽  
...  

The results of bird route censuses, conducted on the territory of the Aldan Highland in the first half of summer and generally covering the period from 2000 to 2019, were analyzed. The total length of the routes was about 2815 km. A total of 116 initial variants of the bird population were used. Based on the results of multivariate factor analysis for 160 species registered in these censuses, a hierarchical classification of their preference for habitats was drawn up. The classification showed that 45 % of birds prefer forests, woodlands and burned areas, 26.2 % - water bodies and their banks, 13.8 % - bogs and meadows, 9.4 % - villages and cities, 5.6 % - mountain tundra. A comparative analysis with a similar classification for the Altai Highland has been performed. The main differences in the territorial distribution of bird species in the Aldan Highland and Altai lie in a smaller number of identified types of preferences in our region. Due to the homogeneity of forest biotopes and the absence of the steppe, forest-steppe, subnival, and nival zones in the Aldan Highland, the corresponding landscapes are not represented here, which determines the absence of the steppe, forest-meadow-steppe, meadow-bog, and subnival types. Similarly to Altai, the forest, tundra and synanthropic types of preference are distinguished in the Aldan Highland.


2021 ◽  
Vol 12 (1) ◽  
pp. 9
Author(s):  
John Gajardo ◽  
Marco Mora ◽  
Guillermo Valdés-Nicolao ◽  
Marcos Carrasco-Benavides

Sentinel-2 satellite images allow high separability for mapping burned and unburned areas. This problem has been extensively addressed using machine-learning algorithms. However, these need a suitable dataset and entail considerable training time. Recently, extreme learning machines (ELM) have presented high precision in classification and regression problems but with low computational cost. This paper proposes evaluating ELM to map burned areas and compare them with other machine-learning algorithms broadly used. Several indices, metrics and training times were used to assess the performance of the algorithms. Considering the average of datasets, the best performance was obtained by random forest (DICE = 0.93; omission and commission = 0.08) and ELM (DICE = 0.90; omission and commission = 0.07). The training time for the best model was from ELM (1.45 s) and logistic regression (1.85 s). According to results, ELM was the best burned-area classification algorithm, considering precision and training time, evidencing great potential to map burned areas at global scales with medium-high spatial resolution images. This information is essential to fire-risk systems and burned-area records used to design prevention and fire-combat strategies, and it provides valuable knowledge on the effect of fires on the landscape and atmosphere.


2021 ◽  
Vol 13 (24) ◽  
pp. 5164
Author(s):  
Eduardo R. Oliveira ◽  
Leonardo Disperati ◽  
Fátima L. Alves

This work presents a change detection method (MINDED-BA) for determining burned extents from multispectral remote sensing imagery. It consists of a development of a previous model (MINDED), originally created to estimate flood extents, combining a multi-index image-differencing approach and the analysis of magnitudes of the image-differencing statistics. The method was implemented, using Landsat and Sentinel-2 data, to estimate yearly burn extents within a study area located in northwest central Portugal, from 2000–2019. The modelling workflow includes several innovations, such as preprocessing steps to address some of the most important sources of error mentioned in the literature, and an optimal bin number selection procedure, the latter being the basis for the threshold selection for the classification of burn-related changes. The results of the model have been compared to an official yearly-burn-extent database and allow verifying the significant improvements introduced by both the pre-processing procedures and the multi-index approach. The high overall accuracies of the model (ca. 97%) and its levels of automatization (through open-source software) indicate potential for being a reliable method for systematic unsupervised classification of burned areas.


2021 ◽  
Vol 13 (24) ◽  
pp. 5131
Author(s):  
Jinxiu Liu ◽  
Du Wang ◽  
Eduardo Eiji Maeda ◽  
Petri K. E. Pellikka ◽  
Janne Heiskanen

Accurate cropland burned area estimation is crucial for air quality modeling and cropland management. However, current global burned area products have been primarily derived from coarse spatial resolution images which cannot fulfill the spatial requirement for fire monitoring at local levels. In addition, there is an overall lack of accurate cropland straw burning identification approaches at high temporal and spatial resolution. In this study, we propose a novel algorithm to capture burned area in croplands using dense Landsat time series image stacks. Cropland burning shows a short-term seasonal variation and a long-term dynamic trend, so a multi-harmonic model is applied to characterize fire dynamics in cropland areas. By assessing a time series of the Burned Area Index (BAI), our algorithm detects all potential burned areas in croplands. A land cover mask is used on the primary burned area map to remove false detections, and the spatial information with a moving window based on a majority vote is employed to further reduce salt-and-pepper noise and improve the mapping accuracy. Compared with the accuracy of 67.3% of MODIS products and that of 68.5% of Global Annual Burned Area Map (GABAM) products, a superior overall accuracy of 92.9% was obtained by our algorithm using Landsat time series and multi-harmonic model. Our approach represents a flexible and robust way of detecting straw burning in complex agriculture landscapes. In future studies, the effectiveness of combining different spectral indices and satellite images can be further investigated.


Sign in / Sign up

Export Citation Format

Share Document