scholarly journals Evolutionary patterns of nucleotide substitution rates in plastid genomes of Quercus

2021 ◽  
Vol 11 (19) ◽  
pp. 13401-13414
Author(s):  
Xuan Li ◽  
Yongfu Li ◽  
Steven Paul Sylvester ◽  
Mingyue Zang ◽  
Yousry A. El‐Kassaby ◽  
...  
2019 ◽  
Author(s):  
Mengjie Yu ◽  
Tracey A Ruhlman ◽  
Nahid H Hajrah ◽  
Mohammad A Khiyami ◽  
Mumdooh J Sabir ◽  
...  

Diatoms are the largest group of heterokont algae with more than 100,000 species. They are photosynthetic, unicellular eukaryotes that contribute ~ 45% of global primary production and inhabit marine, aquatic and terrestrial ecosystems. Despite their ubiquity and environmental significance very few diatom plastid genomes (plastomes) have been sequenced and studied. This study explored the pattern of diatom plastid nucleotide substitution rates across the entire suite of plastome protein-coding genes for 40 taxa representing the major clades. Substitution rate acceleration was lineage specific with the highest rates in the araphid 2 taxon Astrosyne radiata and radial 2 taxon Proboscia sp. Rate heterogeneity was also evident in different functional classes of genes. Similar to land plants, proteins genes involved in photosynthetic metabolism have substantially lower rates than those involved in transcription and translation. Significant positive correlations were identified between rates and measures of genomic rearrangement, but not plastome size. This work advances the current understanding of diatom plastomes and provides a foundation for future studies of their evolution.


2019 ◽  
Author(s):  
Mengjie Yu ◽  
Tracey A Ruhlman ◽  
Nahid H Hajrah ◽  
Mohammad A Khiyami ◽  
Mumdooh J Sabir ◽  
...  

Diatoms are the largest group of heterokont algae with more than 100,000 species. They are photosynthetic, unicellular eukaryotes that contribute ~ 45% of global primary production and inhabit marine, aquatic and terrestrial ecosystems. Despite their ubiquity and environmental significance very few diatom plastid genomes (plastomes) have been sequenced and studied. This study explored the pattern of diatom plastid nucleotide substitution rates across the entire suite of plastome protein-coding genes for 40 taxa representing the major clades. Substitution rate acceleration was lineage specific with the highest rates in the araphid 2 taxon Astrosyne radiata and radial 2 taxon Proboscia sp. Rate heterogeneity was also evident in different functional classes of genes. Similar to land plants, proteins genes involved in photosynthetic metabolism have substantially lower rates than those involved in transcription and translation. Significant positive correlations were identified between rates and measures of genomic rearrangement, but not plastome size. This work advances the current understanding of diatom plastomes and provides a foundation for future studies of their evolution.


Genetics ◽  
1997 ◽  
Vol 146 (1) ◽  
pp. 393-399 ◽  
Author(s):  
Spencer V Muse ◽  
Brandon S Gaut

Even when several genetic loci are used in molecular evolutionary studies, each locus is typically analyzed independently of the others. This type of approach makes it difficult to study mechanisms and processes that affect multiple genes. In this work we develop a statistical approach for the joint analysis of two or more loci. The tests we propose examine whether or not nucleotide substitution rates across evolutionary lineages have the same relative proportions at two loci. Theses procedures are applied to 33 genes from the chloroplast genomes of rice, tobacco, pine, and liverwort. With the exception of five clearly distinct loci, we find that synonymous substitution rates tend to change proportionally across genes. We interpret these results to be consistent with a “lineage effect” acting on the entire chloroplast genome. In contrast, nonsynonymous rates do not change proportionally across genes, suggesting that locus-specific evolutionary effects dominate patterns of nonsynonymous substitution.


2017 ◽  
Vol 84 (4) ◽  
pp. 187-203 ◽  
Author(s):  
Erika N. Schwarz ◽  
Tracey A. Ruhlman ◽  
Mao-Lun Weng ◽  
Mohammad A. Khiyami ◽  
Jamal S. M. Sabir ◽  
...  

2015 ◽  
Vol 89 (21) ◽  
pp. 10993-11001 ◽  
Author(s):  
Daniel Rejmanek ◽  
Parviez R. Hosseini ◽  
Jonna A. K. Mazet ◽  
Peter Daszak ◽  
Tracey Goldstein

ABSTRACTThe increasing number of zoonotic infections caused by influenza A virus (IAV) subtypes of avian origin (e.g., H5N1 and H7N9) in recent years underscores the need to better understand the factors driving IAV evolution and diversity. To evaluate the current feasibility of global analyses to contribute to this aim, we evaluated information in the public domain to explore IAV evolutionary dynamics, including nucleotide substitution rates and selection pressures, using 14 IAV subtypes in 32 different countries over a 12-year period (2000 to 2011). Using geospatial information from 39,785 IAV strains, we examined associations between subtype diversity and socioeconomic, biodiversity, and agricultural indices. Our analyses showed that nucleotide substitution rates for 11 of the 14 evaluated subtypes tended to be higher in Asian countries, particularly in East Asia, than in Canada and the United States. Similarly, at a regional level, subtypes H5N1, H5N2, and H6N2 exhibited significantly higher substitution rates in East Asia than in North America. In contrast, the selection pressures (measured as ratios of nonsynonymous to synonymous evolutionary changes [dN/dSratios]) acting on individual subtypes showed little geographic variation. We found that the strongest predictors for the detected subtype diversity at the country level were reporting effort (i.e., total number of strains reported) and health care spending (an indicator of economic development). Our analyses also identified major global gaps in IAV reporting (including a lack of sequences submitted from large portions of Africa and South America and a lack of geolocation information) and in broad subtype testing which, until addressed, will continue to hinder efforts to track the evolution and diversity of IAV around the world.IMPORTANCEIn recent years, an increasing number of influenza A virus (IAV) subtypes, including H5N1, H7N9, and H10N8, have been detected in humans. High fatality rates have led to an increased urgency to better understand where and how novel pathogenic influenza virus strains emerge. Our findings showed that mutational rates of 11 commonly encountered subtypes were higher in East Asian countries than in North America, suggesting that there may be a greater risk for the emergence of novel pathogenic strains in East Asia. In assessing the potential drivers of IAV subtype diversity, our analyses confirmed that reporting effort and health care spending were the best predictors of the observed subtype diversity at the country level. These findings underscore the need to increase sampling and reporting efforts for all subtypes in many undersampled countries throughout the world.


Sign in / Sign up

Export Citation Format

Share Document