cell tropism
Recently Published Documents


TOTAL DOCUMENTS

367
(FIVE YEARS 85)

H-INDEX

60
(FIVE YEARS 8)

2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Lei Sun ◽  
Jia-min Chen ◽  
Kun Yang ◽  
Liang Zhang ◽  
Zhi-yuan Ma ◽  
...  

Abstract Background Cytomegalovirus (CMV) has been recognized as one of the frequently occurring opportunistic infections (OIs) reported in the patients having human immunodeficiency virus/acquired immunodeficiency syndrome (HIV/AIDS). In addition, it has been identified as the factor leading to gastrointestinal (GI) tract disorder among HIV/AIDS population. CMV exhibits broad cell tropism in different organs. This study evaluated the CMV cell tropism and clinicopathological characteristics of CMV infection in the different GI regions in HIV/AIDS cases. Methods Using nucleic acid in situ hybridization (ISH), CMV was detected in the gastrointestinal mucosal biopsy samples. The paraffin-embedded samples were stained with hematoxylin and eosin (HE) and immunohistochemistry (IHC), respectively. Results A total of 32 HIV/AIDS patients were enrolled in this study. Fourteen of these patients underwent gastroscopy, while the remaining eighteen received colonoscopy. CMV-infected cells were observed at 46 GI sites. Among them, the colon was the region with the highest susceptibility to GI CMV infection (n = 12, 26.1%). The CMV giant cell inclusion bodies were detected in epithelial cells and mesenchymal cells, including histiocytes, smooth muscle cells, fibroblasts, and endothelial cells. In the duodenum, there were markedly more positive epithelial cells than mesenchymal cells (p = 0.033). In contrast, in the esophagus (p = 0.030), cardia (p = 0.003), rectum (p = 0.019), colon (p < 0.001), and cecum (p < 0.001), there were notably less positive epithelial cells than mesenchymal cells. The expression levels of PDGFRα and Nrp2 in the mesenchymal cells were higher than the epithelial cells in cardia, cecum, colon, sigmoid, and rectum, especially in the areas with ulcers. However, Nrp2 in the epithelial cells was higher than that in the duodenum. Moreover, the positive CMV DNA in peripheral blood was related to the CMV-positive cell count, as well as the ulceration in GI tract (p = 0.035 and 0.036, respectively). Conclusions The colon has been identified as the GI site with the highest susceptibility to CMV infection. There are different CMV-infected cells in the different sites of the GI that relate to the expression level of PDGFRα and Nrp2. CMV DNA positive in the blood is related to the positive CMV cell count, as well as ulceration in the GI tract.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Kapil Gupta ◽  
Christine Toelzer ◽  
Maia Kavanagh Williamson ◽  
Deborah K. Shoemark ◽  
A. Sofia F. Oliveira ◽  
...  

AbstractAs the global burden of SARS-CoV-2 infections escalates, so does the evolution of viral variants with increased transmissibility and pathology. In addition to this entrenched diversity, RNA viruses can also display genetic diversity within single infected hosts with co-existing viral variants evolving differently in distinct cell types. The BriSΔ variant, originally identified as a viral subpopulation from SARS-CoV-2 isolate hCoV-19/England/02/2020, comprises in the spike an eight amino-acid deletion encompassing a furin recognition motif and S1/S2 cleavage site. We elucidate the structure, function and molecular dynamics of this spike providing mechanistic insight into how the deletion correlates to viral cell tropism, ACE2 receptor binding and infectivity of this SARS-CoV-2 variant. Our results reveal long-range allosteric communication between functional domains that differ in the wild-type and the deletion variant and support a view of SARS-CoV-2 probing multiple evolutionary trajectories in distinct cell types within the same infected host.


2022 ◽  
Vol 18 (1) ◽  
pp. e1010193
Author(s):  
Quang Vinh Phan ◽  
Boris Bogdanow ◽  
Emanuel Wyler ◽  
Markus Landthaler ◽  
Fan Liu ◽  
...  

The chimpanzee cytomegalovirus (CCMV) is the closest relative of human CMV (HCMV). Because of the high conservation between these two species and the ability of human cells to fully support CCMV replication, CCMV holds great potential as a model system for HCMV. To make the CCMV genome available for precise and rapid gene manipulation techniques, we captured the genomic DNA of CCMV strain Heberling as a bacterial artificial chromosome (BAC). Selected BAC clones were reconstituted to infectious viruses, growing to similar high titers as parental CCMV. DNA sequencing confirmed the integrity of our clones and led to the identification of two polymorphic loci and a deletion-prone region within the CCMV genome. To re-evaluate the CCMV coding potential, we analyzed the viral transcriptome and proteome and identified several novel ORFs, splice variants, and regulatory RNAs. We further characterized the dynamics of CCMV gene expression and found that viral proteins cluster into five distinct temporal classes. In addition, our datasets revealed that the host response to CCMV infection and the de-regulation of cellular pathways are in line with known hallmarks of HCMV infection. In a first functional experiment, we investigated a proposed frameshift mutation in UL128 that was suspected to restrict CCMV’s cell tropism. In fact, repair of this frameshift re-established productive CCMV infection in endothelial and epithelial cells, expanding the options of CCMV as an infection model. Thus, BAC-cloned CCMV can serve as a powerful tool for systematic approaches in comparative functional genomics, exploiting the close phylogenetic relationship between CCMV and HCMV.


2021 ◽  
pp. 102007
Author(s):  
Atsushi Yamada ◽  
Toshiaki Takeichi ◽  
Kyoka Kiryu ◽  
Satoshi Takashino ◽  
Masaki Yoshida ◽  
...  

2021 ◽  
Vol 17 (1) ◽  
Author(s):  
Zhige Tian ◽  
Qing Pan ◽  
Miaomiao Zheng ◽  
Ying Deng ◽  
Peng Guo ◽  
...  

Abstract Background According to the differences of antigen and genetic composition, canine coronavirus (CCoV) consists of two genotypes, CCoV-I and CCoV-II. Since 2004, CCoVs with point mutations or deletions of NSPs are contributing to the changes in tropism and virulence in dogs. Results In this study, we isolated a CCoV, designated HLJ-071, from a dead 5-week-old female Welsh Corgi with severe diarrhea and vomit. Sequence analysis suggested that HLJ-071 bearing a complete ORF3abc compared with classic CCoV isolates (1-71, K378 and S378). In addition, a variable region was located between S gene and ORF 3a gene, in which a deletion with 104 nts for HLJ-071 when compared with classic CCoV strains 1-71, S378 and K378. Phylogenetic analysis based on the S gene and complete sequences showed that HLJ-071 was closely related to FCoV II. Recombination analysis suggested that HLJ-071 originated from the recombination of FCoV 79-1683, FCoV DF2 and CCoV A76. Finally, according to cell tropism experiments, it suggested that HLJ-071 could replicate in canine macrophages/monocytes cells. Conclusion The present study involved the isolation and genetic characterization of a variant CCoV strain and spike protein and ORF3abc of CCoV might play a key role in viral tropism, which could affect the replication in monocyte/macrophage cells. It will provide essential information for further understanding the evolution in China.


2021 ◽  
Author(s):  
Mitra Gultom ◽  
Annika Kratzel ◽  
Jasmine Portmann ◽  
Hanspeter Stalder ◽  
Astrid Chanfon Baetzner ◽  
...  

In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus. Histological characterization revealed progressive epithelial cellular differentiation with well-resemblance to autologous ex vivo tissues. We demonstrate that MERS-CoV displays a divergent cell tropism and replication kinetics profile in both AEC models. Furthermore, we observed that in the camelid AEC models MERS-CoV replication can be inhibited by both type I and III interferons (IFNs). In conclusion, we successfully established camelid AEC cultures that recapitulate the in vivo airway epithelium and reflect MERS-CoV infection in vivo. In combination with human AEC cultures, this system allows detailed characterization of the molecular basis of MERS-CoV cross-species transmission in respiratory epithelium. 


Open Biology ◽  
2021 ◽  
Vol 11 (11) ◽  
Author(s):  
S. M. Roche ◽  
S. Holbert ◽  
Y. Le Vern ◽  
C. Rossignol ◽  
A. Rossignol ◽  
...  

Poultry are the main source of human infection by Salmonella . As infected poultry are asymptomatic, identifying infected poultry farms is difficult, thus controlling animal infections is of primary importance. As cell tropism is known to govern disease, our aim was therefore to identify infected host–cell types in the organs of chicks known to be involved in Salmonella infection and investigate the role of the three known invasion factors in this process (T3SS-1, Rck and PagN). Chicks were inoculated with wild-type or isogenic fluorescent Salmonella Typhimurium mutants via the intracoelomic route. Our results show that liver, spleen, gall bladder and aortic vessels could be foci of infection, and that phagocytic and non-phagocytic cells, including immune, epithelial and endothelial cells, are invaded in vivo in each organ. Moreover, a mutant defective for the T3SS-1, Rck and PagN remained able to colonize organs like the wild-type strain and invaded non-phagocytic cells in each organ studied. As the infection of the gall bladder had not previously been described in chicks, invasion of gall bladder cells was confirmed by immunohistochemistry and infection was shown to last several weeks after inoculation. Altogether, for the first time these findings provide insights into cell tropism of Salmonella in relevant organs involved in Salmonella infection in chicks and also demonstrate that the known invasion factors are not required for entry into these cell types.


Author(s):  
Inés García-Rodríguez ◽  
Hetty van Eijk ◽  
Gerrit Koen ◽  
Dasja Pajkrt ◽  
Adithya Sridhar ◽  
...  

Human parechovirus (PeV-A), one of the species within the Picornaviridae family, is known to cause disease in humans. The most commonly detected genotypes are PeV-A1, associated with mild gastrointestinal disease in young children, and PeV-A3, linked to severe disease with neurological symptoms in neonates. As PeV-A are detectable in stool and nasopharyngeal samples, entry is speculated to occur via the respiratory and gastro-intestinal routes. In this study, we characterized PeV-A1 and PeV-A3 replication and tropism in the intestinal epithelium using a primary 2D model based on human fetal enteroids. This model was permissive to infection with lab-adapted strains and clinical isolates of PeV-A1, but for PeV-A3, infection could only be established with clinical isolates. Replication was highest with infection established from the basolateral side with apical shedding for both genotypes. Compared to PeV-A1, replication kinetics of PeV-A3 were slower. Interestingly, there was a difference in cell tropism with PeV-A1 infecting both Paneth cells and enterocytes, while PeV-A3 infected mainly goblet cells. This difference in cell tropism may explain the difference in replication kinetics and associated disease in humans.


2021 ◽  
Author(s):  
Kah Whye Peng ◽  
Timothy Carey ◽  
Patrcyja Lech ◽  
Rianna Vandergaast ◽  
Miguel A Munoz-Alia ◽  
...  

An orally active vaccine capable of boosting SARS-CoV-2 immune responses in previously infected or vaccinated individuals would help efforts to achieve and sustain herd immunity. Unlike mRNA-loaded lipid nanoparticles and recombinant replication-defective adenoviruses, replicating vesicular stomatitis viruses with SARS-CoV-2 spike glycoproteins (VSV-SARS2) were poorly immunogenic after intramuscular administration in clinical trials. Here, by G protein trans-complementation, we generated VSV-SARS2(+G) virions with expanded target cell tropism. Compared to parental VSV-SARS2, G-supplemented viruses were orally active in virus-naive and vaccine-primed cynomolgus macaques, powerfully boosting SARS-CoV-2 neutralizing antibody titers. Clinical testing of this oral VSV-SARS2(+G) vaccine is planned.


Viruses ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1962
Author(s):  
Ning Wang ◽  
Chu-Ming Luo ◽  
Xing-Lou Yang ◽  
Hai-Zhou Liu ◽  
Li-Biao Zhang ◽  
...  

Bats have been identified as natural reservoirs of a variety of coronaviruses. They harbor at least 19 of the 33 defined species of alpha- and betacoronaviruses. Previously, the bat coronavirus HKU10 was found in two bat species of different suborders, Rousettus leschenaultia and Hipposideros pomona, in south China. However, its geographic distribution and evolution history are not fully investigated. Here, we screened this viral species by a nested reverse transcriptase PCR in our archived samples collected over 10 years from 25 provinces of China and one province of Laos. From 8004 bat fecal samples, 26 were found to be positive for bat coronavirus HKU10 (BtCoV HKU10). New habitats of BtCoV HKU10 were found in the Yunnan, Guangxi, and Hainan Provinces of China, and Louang Namtha Province in Laos. In addition to H. pomona, BtCoV HKU10 variants were found circulating in Aselliscus stoliczkanus and Hipposideros larvatus. We sequenced full-length genomes of 17 newly discovered BtCoV HKU10 strains and compared them with previously published sequences. Our results revealed a much higher genetic diversity of BtCoV HKU10, particularly in spike genes and accessory genes. Besides the two previously reported lineages, we found six novel lineages in their new habitats, three of which were located in Yunnan province. The genotypes of these viruses are closely related to sampling locations based on polyproteins, and correlated to bat species based on spike genes. Combining phylogenetic analysis, selective pressure, and molecular-clock calculation, we demonstrated that Yunnan bats harbor a gene pool of BtCoV HKU10, with H. pomona as a natural reservoir. The cell tropism test using spike-pseudotyped lentivirus system showed that BtCoV HKU10 could enter cells from human and bat, suggesting a potential interspecies spillover. Continuous studies on these bat coronaviruses will expand our understanding of the evolution and genetic diversity of coronaviruses, and provide a prewarning of potential zoonotic diseases from bats.


Sign in / Sign up

Export Citation Format

Share Document