Exogenous β2-microglobulin is required for antigenic peptide binding to isolated class I major histocompatibility complex molecules

1991 ◽  
Vol 21 (9) ◽  
pp. 2289-2292 ◽  
Author(s):  
Kevin P. Kane ◽  
Linda A. Sherman ◽  
Matthew F. Mescher
2014 ◽  
Vol 88 (6) ◽  
pp. 3298-3308 ◽  
Author(s):  
N. A. May ◽  
Q. Wang ◽  
A. Balbo ◽  
S. L. Konrad ◽  
R. Buchli ◽  
...  

1998 ◽  
Vol 72 (1) ◽  
pp. 460-466 ◽  
Author(s):  
Tara L. Chapman ◽  
Pamela J. Bjorkman

ABSTRACT Both human and murine cytomegaloviruses (HCMV and MCMV) down-regulate expression of conventional class I major histocompatibility complex (MHC) molecules at the surfaces of infected cells. This allows the infected cells to evade recognition by cytotoxic T cells but leaves them susceptible to natural killer cells, which lyse cells that lack class I molecules. Both HCMV and MCMV encode class I MHC heavy-chain homologs that may function in immune response evasion. We previously showed that a soluble form of the HCMV class I homolog (UL18) expressed in Chinese hamster ovary cells binds the class I MHC light-chain β2-microglobulin and a mixture of endogenous peptides (M. L. Fahnestock, J. L. Johnson, R. M. R. Feldman, J. M. Neveu, W. S. Lane, and P. J. Bjorkman, Immunity 3:583–590, 1995). Consistent with this observation, sequence comparisons suggest that UL18 contains the well-characterized groove that serves as the binding site in MHC molecules for peptides derived from endogenous and foreign proteins. By contrast, the MCMV homolog (m144) contains a substantial deletion within the counterpart of its α2 domain and might not be expected to contain a groove capable of binding peptides. We have now expressed a soluble version of m144 and verified that it forms a heavy chain–β2-microglobulin complex. By contrast to UL18 and classical class I MHC molecules, m144 does not associate with endogenous peptides yet is thermally stable. These results suggest that UL18 and m144 differ structurally and might therefore serve different functions for their respective viruses.


2011 ◽  
Vol 63 (12) ◽  
pp. 821-834 ◽  
Author(s):  
Lasse Eggers Pedersen ◽  
Mikkel Harndahl ◽  
Michael Rasmussen ◽  
Kasper Lamberth ◽  
William T. Golde ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document