docking simulation
Recently Published Documents


TOTAL DOCUMENTS

622
(FIVE YEARS 362)

H-INDEX

23
(FIVE YEARS 8)

Author(s):  
Vong Adrianne Dien-Yu ◽  
Hwang Siaw-San ◽  
Chee Xavier Wezen ◽  
Sim Edmund Ui-Hang

RSC Advances ◽  
2022 ◽  
Vol 12 (3) ◽  
pp. 1871-1884
Author(s):  
Mona S. Ragab ◽  
Mohamed R. Shehata ◽  
Mohamed M. Shoukry ◽  
Matti Haukka ◽  
Mohamed A. Ragheb

Synthesis, structural characterization, docking simulation, theoretical calculations, and biological evaluation of a new palladium(ii) complex have been reported.


2021 ◽  
Vol 19 (4) ◽  
pp. e48
Author(s):  
Abdullah All Jaber ◽  
Zeshan Mahmud Chowdhury ◽  
Arittra Bhattacharjee ◽  
Muntahi Mourin ◽  
Chaman Ara Keya ◽  
...  

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) encodes small envelope protein (E) that plays a major role in viral assembly, release, pathogenesis, and host inflammation. Previous studies demonstrated that pyrazine ring containing amiloride analogs inhibit this protein in different types of coronavirus including SARS-CoV-1 small envelope protein E (SARS-CoV-1 E). SARS-CoV-1 E has 93.42% sequence identity with SARS-CoV-2 E and shared a conserved domain NS3/small envelope protein (NS3_envE). Amiloride analog hexamethylene amiloride (HMA) can inhibit SARS-CoV-1 E. Therefore, we performed molecular docking and dynamics simulations to explore whether amiloride analogs are effective in inhibiting SARS-CoV-2 E. To do so, SARS-CoV-1 E and SARS-CoV-2 E proteins were taken as receptors while HMA and 3-amino-5-(azepan-1-yl)-N-(diaminomethylidene)-6-pyrimidin-5-ylpyrazine-2-carboxamide (3A5NP2C) were selected as ligands. Molecular docking simulation showed higher binding affinity scores of HMA and 3A5NP2C for SARS-CoV-2 E than SARS-CoV-1 E. Moreover, HMA and 3A5NP2C engaged more amino acids in SARS-CoV-2 E. Molecular dynamics (MD) simulation for 1 μs (1,000 ns) revealed that these ligands could alter the native structure of the proteins and their flexibility. Our study suggests that suitable amiloride analogs might yield a prospective drug against coronavirus disease 2019.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Nguyen Thi Thanh Hai ◽  
Thanh Q. Bui ◽  
Tran Thi Ai My ◽  
Huynh Thi Phuong Loan ◽  
Tran Thai Hoa ◽  
...  

Copper lighter tetrylenes are promising for inhibition towards Rhizoctonia solani-based protein PDB-4G9M and Magnaporthe oryzae-based PDB-6JBR in rice. Quantum properties of four hypothetic copper complexes of carbenes and silylenes (Cu-NHC1, Cu-NHC2, Cu-NHSi1, and Cu-NHSi2) were examined using the density functional theory. Their inhibitability towards the targeted proteins was evaluated using molecular docking simulation. Quantum analysis predicts the stability of the investigated complexes and thus their practical existability and practicable synthesisability. Their electronic configurations are justified as highly conducive to intermolecular interaction. Regarding ligand-protein as carbenes/silylenes-4G9M inhibitory structures, the stability is estimated in the order [Cu-NHC2]-4G9M (DS −12.9 kcal⋅mol−1) > [Cu-NHSi1]-4G9M (DS −11.8 kcal⋅mol−1) = [Cu-NHSi2]-4G9M (DS −11.7 kcal⋅mol−1) > [Cu-NHC1]-4G9M (DS –11.4 kcal⋅mol−1). In contrast, the corresponding order for the carbenes/silylenes-6JBR systems is [Cu-NHSi2]-6JBR (DS –13.4 kcal⋅mol−1) > [Cu-NHC2]-6JBR (DS −13.0 kcal⋅mol−1) = [Cu-NHSi1]-6JBR (DS −12.6 kcal⋅mol−1) > [Cu-NHC1]-6JBR (DS −12.3 kcal⋅mol−1). In theory, this study suggests a potentiality of copper lighter tetrylenes and their derivatives against the infection of fungi Rhizoctonia solani and Magnaporthe oryzae, thus encouraging attempts for experimental developments.


Biomedicines ◽  
2021 ◽  
Vol 10 (1) ◽  
pp. 24
Author(s):  
Manal Y. Sameeh ◽  
Manal M. Khowdiary ◽  
Hisham S. Nassar ◽  
Mahmoud M. Abdelall ◽  
Suliman A. Alderhami ◽  
...  

This work aimed to synthesize safe antihyperglycemic derivatives bearing thiazolidinedione fragment based on spectral data. The DFT theory discussed the frontier molecular orbitals (FMOs), chemical reactivity of compounds, and molecular electrostatic potential (MEP) to explain interaction between thiazolidinediones and the biological receptor. α-amylase is known as the initiator-hydrolysis of the of polysaccharides; therefore, developing α-amylase inhibitors can open the way for a potential diabetes mellitus drug. The molecular docking simulation was performed into the active site of PPAR-γ and α-amylase. We evaluated in vitro α-amylase’s potency and radical scavenging ability. The compound 6 has the highest potency against α-amylase and radical scavenging compared to the reference drug and other members. They have been applied against anti-diabetic and anti-hyperlipidemic activity (in vivo) based on an alloxan-induced diabetic rat model during a 30-day treatment protocol. The most potent anti hyperglycemic members are 6 and 11 with reduction percentage of blood glucose level by 69.55% and 66.95%, respectively; compared with the normal control. Other members exhibited moderate to low anti-diabetic potency. All compounds showed a normal value against the tested biochemical parameters (CH, LDL, and HDL). The ADMET profile showed good oral bioavailability without any observed carcinogenesis effect.


2021 ◽  
Vol 5 (4) ◽  
pp. 347-352
Author(s):  
Taufik Muhammad Fakih ◽  
Mentari Luthfika Dewi

The recent public health crisis is threatening the world with the emergence of the spread of the new coronavirus 2019 (2019-nCoV) or severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). This virus originates from bats and is transmitted to humans through unknown intermediate animals in Wuhan, China in December 2019. Advances in technology have opened opportunities to find candidates for natural compounds capable of preventing and controlling COVID-19 infection through inhibition of spike proteins of SARS-CoV-2. This research aims to identify, evaluate, and explore the structure of spike protein macromolecules from three coronaviruses (SARS-CoV, MERS-CoV, and SARS-CoV-2) and their effects on Angiotensin-Converting Enzyme 2 (ACE-2) using computational studies. Based on the identification of the three spike protein macromolecules, it was found that there was a similarity between the active binding sites of ACE-2. These observations were then confirmed using a protein-docking simulation to observe the interaction of the protein spike to the active site of ACE-2. SARS-COV-2 spike protein has the strongest bond to ACE-2, with an ACE score of −1341.85 kJ/mol. Therefore, some of this information from the results of this research can be used as a reference in the development of competitive inhibitor candidates for SARS-CoV-2 spike proteins for the treatment of COVID-19 infectious diseases.


2021 ◽  
Vol 12 ◽  
Author(s):  
Xifeng Xiong ◽  
Nan Tang ◽  
Xudong Lai ◽  
Jinli Zhang ◽  
Weilun Wen ◽  
...  

Amentoflavone is an active phenolic compound isolated from Selaginella tamariscina over 40 years. Amentoflavone has been extensively recorded as a molecule which displays multifunctional biological activities. Especially, amentoflavone involves in anti-cancer activity by mediating various signaling pathways such as extracellular signal-regulated kinase (ERK), nuclear factor kappa-B (NF-κB) and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), and emerges anti-SARS-CoV-2 effect via binding towards the main protease (Mpro/3CLpro), spike protein receptor binding domain (RBD) and RNA-dependent RNA polymerase (RdRp) of SARS-CoV-2. Therefore, amentoflavone is considered to be a promising therapeutic agent for clinical research. Considering the multifunction of amentoflavone, the current review comprehensively discuss the chemistry, the progress in its diverse biological activities, including anti-inflammatory, anti-oxidation, anti-microorganism, metabolism regulation, neuroprotection, radioprotection, musculoskeletal protection and antidepressant, specially the fascinating role against various types of cancers. In addition, the bioavailability and drug delivery of amentoflavone, the molecular mechanisms underlying the activities of amentoflavone, the molecular docking simulation of amentoflavone through in silico approach and anti-SARS-CoV-2 effect of amentoflavone are discussed.


COVID ◽  
2021 ◽  
Vol 1 (4) ◽  
pp. 757-774
Author(s):  
Benjamin Ayodipupo Babalola ◽  
Tosin Emmanuel Adetobi ◽  
Oluwamayowa Samuel Akinsuyi ◽  
Otunba Ahmed Adebisi ◽  
Elizabeth Oreoluwa Folajimi

Severe Acute Respiratory Syndrome Coronavirus- 2 (SARS-CoV-2), including the recently reported severe variant B.1.617.2, has been reported to attack the respiratory tract with symptoms that may ultimately lead to death. While studies have been conducted to evaluate therapeutic interventions against the virus, this study evaluated the inhibitory potential of virtually screened novel derivatives and structurally similar compounds towards SARS-CoV-2 via a computational approach. A molecular docking simulation of the inhibitory potentials of the compounds against the SARS-CoV-2 drug targets—main protease (Mpro), spike protein (Spro), and RNA-dependent RNA polymerase (RdRp)—were evaluated and achieved utilizing AutoDock Vina in PyRx workspace. The absorption, distribution, metabolism, excretion, and toxicity (ADMET) properties of these compounds were assessed using SwissADME and ADMETLab servers. All the compounds displayed high binding affinities for the SARS-CoV-2 drug targets. However, the C13 exhibited the highest binding affinity for the drug targets, Spro and RdRp, while C15 exhibited the highest binding affinity for Mpro. The compounds interacted with the LEU A:271, LEU A:287, ASP A:289, and LEU A:272 of Mpro and the HIS A:540, PRO A:415, PHE A:486, and LEU A:370 of the Spro receptor binding motif and some active site amino acids of RdRp. The compounds also possess a favourable ADMET profile and showed no tendency towards hERG inhibition, hepatotoxicity, carcinogenicity, mutagenicity, or drug-liver injury. These novel compounds could offer therapeutic benefits against SARS-CoV-2, and wet laboratory experiments are necessary to further validate the results of this computational study.


Sign in / Sign up

Export Citation Format

Share Document