Inhibition of I-Ad-, but not Db-restricted peptide-induced thymic apoptosis by glucocorticoid receptor antagonist RU486 in T cell receptor transgenic mice

1996 ◽  
Vol 26 (2) ◽  
pp. 428-434 ◽  
Author(s):  
Yintong Xue ◽  
Marianna Murdjeva ◽  
Sam Okret ◽  
David McConkey ◽  
Dimitris Kiuossis ◽  
...  
2002 ◽  
Vol 22 (13) ◽  
pp. 4556-4566 ◽  
Author(s):  
Cheng-Tai Yu ◽  
Ming-Hsien Lin Feng ◽  
Hsiu-ming Shih ◽  
Ming-Zong Lai

ABSTRACT Positive selection of T cells is postulated to be dependent on the counterinteraction between glucocorticoid receptor (GR)- and T-cell-receptor (TCR)-induced death signals. In this study we used T-cell-specific expression of p300 to investigate whether GR-TCR cross talk between thymocytes was affected. Activation of the p300-transgenic T cells led to enhanced thymocyte proliferation and increased interleukin 2 production. Thymocyte death, induced by TCR engagement, was no longer prevented by dexamethasone in p300-transgenic mice, indicating an absence of GR-TCR cross-inhibition. This was accompanied by a 50% reduction in the number of thymocytes in p300-transgenic mice. However, the CD4/CD8 profile of thymocytes remained unchanged in p300-transgenic mice. There was no effect on positive selection of the bulk thymocytes or thymocytes with transgenic TCR in p300-transgenic mice. In addition, there was no apparent TCR repertoire “hole” in the selected antigens examined. Our results illustrate a critical role of CBP/p300 in thymic GR-TCR counterinteraction yet do not support the involvement of GR-TCR antagonism in thymocyte positive selection.


2002 ◽  
Vol 196 (4) ◽  
pp. 481-492 ◽  
Author(s):  
Kristin V. Tarbell ◽  
Mark Lee ◽  
Erik Ranheim ◽  
Cheng Chi Chao ◽  
Maija Sanna ◽  
...  

Glutamic acid decarboxylase (GAD)65 is an early and important antigen in both human diabetes mellitus and the nonobese diabetic (NOD) mouse. However, the exact role of GAD65-specific T cells in diabetes pathogenesis is unclear. T cell responses to GAD65 occur early in diabetes pathogenesis, yet only one GAD65-specific T cell clone of many identified can transfer diabetes. We have generated transgenic mice on the NOD background expressing a T cell receptor (TCR)-specific for peptide epitope 286–300 (p286) of GAD65. These mice have GAD65-specific CD4+ T cells, as shown by staining with an I-Ag7(p286) tetramer reagent. Lymphocytes from these TCR transgenic mice proliferate and make interferon γ, interleukin (IL)-2, tumor necrosis factor (TNF)-α, and IL-10 when stimulated in vitro with GAD65 peptide 286–300, yet these TCR transgenic animals do not spontaneously develop diabetes, and insulitis is virtually undetectable. Furthermore, in vitro activated CD4 T cells from GAD 286 TCR transgenic mice express higher levels of CTL-associated antigen (CTLA)-4 than nontransgenic littermates. CD4+ T cells, or p286-tetramer+CD4+ Tcells, from GAD65 286–300-specific TCR transgenic mice delay diabetes induced in NOD.scid mice by diabetic NOD spleen cells. This data suggests that GAD65 peptide 286–300-specific T cells have disease protective capacity and are not pathogenic.


Cell ◽  
1989 ◽  
Vol 58 (5) ◽  
pp. 911-921 ◽  
Author(s):  
Michael L.B. Becker ◽  
Richard Near ◽  
Meredith Mudgett-Hunter ◽  
Michael N. Margolies ◽  
Ralph T. Kubo ◽  
...  

1997 ◽  
Vol 94 (8) ◽  
pp. 3920-3925 ◽  
Author(s):  
S. D. Hurst ◽  
S. M. Sitterding ◽  
S. Ji ◽  
T. A. Barrett

Sign in / Sign up

Export Citation Format

Share Document