Modulatory role of the orexin system in stress‐induced analgesia: Involvement of the ventral tegmental area

2021 ◽  
Author(s):  
Kobra Askari ◽  
Shahrbanoo Oryan ◽  
Akram Eidi ◽  
Jalal Zaringhalam ◽  
Abbas Haghparast
Author(s):  
Hongsheng Wang ◽  
Wanpeng Cui ◽  
Wenbing Chen ◽  
Fang Liu ◽  
Zhaoqi Dong ◽  
...  

AbstractDopamine (DA) neurons in the ventral tegmental area (VTA) are critical to coping with stress. However, molecular mechanisms regulating their activity and stress-induced depression were not well understood. We found that the receptor tyrosine kinase ErbB4 in VTA was activated in stress-susceptible mice. Deleting ErbB4 in VTA or in DA neurons, or chemical genetic inhibition of ErbB4 kinase activity in VTA suppressed the development of chronic social defeat stress (CSDS)-induced depression-like behaviors. ErbB4 activation required the expression of NRG1 in the laterodorsal tegmentum (LDTg); LDTg-specific deletion of NRG1 inhibited depression-like behaviors. NRG1 and ErbB4 suppressed potassium currents of VTA DA neurons and increased their firing activity. Finally, we showed that acute inhibition of ErbB4 after stress attenuated DA neuron hyperactivity and expression of depression-like behaviors. Together, these observations demonstrate a critical role of NRG1-ErbB4 signaling in regulating depression-like behaviors and identify an unexpected mechanism by which the LDTg-VTA circuit regulates the activity of DA neurons.


2015 ◽  
Vol 35 (35) ◽  
pp. 12217-12231 ◽  
Author(s):  
L. Hipolito ◽  
A. Wilson-Poe ◽  
Y. Campos-Jurado ◽  
E. Zhong ◽  
J. Gonzalez-Romero ◽  
...  

2020 ◽  
Vol 124 (2) ◽  
pp. 309-311
Author(s):  
Allan R. Wang ◽  
Alexa Groome ◽  
Lara Taniguchi ◽  
Neir Eshel ◽  
Brandon S. Bentzley

The role dopamine plays in reward-related behaviors has been debated for decades. Heymann et al. (Heymann G, Jo YS, Reichard KL, McFarland N, Chavkin C, Palmiter RD, Soden ME, Zweifel LS. Neuron 105: 909–920, 2020) identify subpopulations of dopamine-producing neurons that separately mediate reward association and motivation. Their results help demonstrate that dopamine signaling may partake in both reinforcement learning and incentive salience functions, instantiated by neuropeptide-defined subpopulations of the ventral tegmental area with different projection targets.


1987 ◽  
Vol 96 (2) ◽  
pp. 151-157 ◽  
Author(s):  
Kenneth E. Mooney ◽  
Akira Inokuchi ◽  
James B. Snow ◽  
Charles P. Kimmelman

The projection between the ventral tegmental area (VTA) and the olfactory tubercle (OT) was examined electrophysiologically in the rat. Stimulation of the olfactory bulb (OB) determined if the OT neurons were olfactory-related. Ipsilateral VTA stimulation produced a change in neuronal activity in 77% of the neurons tested, with 41% being inhibited, 24% excited, and 12% had mixed response. Contralateral VTA stimulation produced changes in only 38%. Intravenous administration of haloperidol was used in examination of the role of dopamine in this neural connection. The results suggest that the VTA-induced inhibitory response on OT neurons is mediated by dopamine, whereas excitatory responses are not. The VTA inhibitory influence projects primarily to olfactory-related neurons, since 60% of olfactory-related OT neurons were inhibited—as compared to 34% of non-olfactory-related neurons. This study documents electrophysiologically the VTA-OT connection and suggests that the dopaminergic input may modulate olfactory information projected to the OT from the OB. It also supports the concept that the OT acts as an integration center in central olfactory processing.


Sign in / Sign up

Export Citation Format

Share Document