Asymmetric Responses of the Western Tropical Pacific Sea Level to El Niño and La Niña

2020 ◽  
Author(s):  
Fan WANG ◽  
Qiuping Ren ◽  
Yuanlong Li ◽  
Fei Zheng ◽  
Jing Duan
2020 ◽  
Vol 125 (10) ◽  
Author(s):  
Qiuping Ren ◽  
Yuanlong Li ◽  
Fei Zheng ◽  
Fan Wang ◽  
Jing Duan ◽  
...  

2006 ◽  
Vol 19 (17) ◽  
pp. 4378-4396 ◽  
Author(s):  
Renguang Wu ◽  
Ben P. Kirtman

Abstract The present study documents the influence of El Niño and La Niña events on the spread and predictability of rainfall, surface pressure, and 500-hPa geopotential height, and contrasts the relative contribution of signal and noise changes to the predictability change based on a long-term integration of an interactive ensemble coupled general circulation model. It is found that the pattern of the El Niño–Southern Oscillation (ENSO)-induced noise change for rainfall follows closely that of the corresponding signal change in most of the tropical regions. The noise for tropical Pacific surface pressure is larger (smaller) in regions of lower (higher) mean pressure. The ENSO-induced noise change for 500-hPa height displays smaller spatial scales compared to and has no systematic relationship with the signal change. The predictability for tropical rainfall and surface pressure displays obvious contrasts between the summer and winter over the Bay of Bengal, the western North Pacific, and the tropical southwestern Indian Ocean. The predictability for tropical 500-hPa height is higher in boreal summer than in boreal winter. In the equatorial central Pacific, the predictability for rainfall is much higher in La Niña years than in El Niño years. This occurs because of a larger percent reduction in the amplitude of noise compared to the percent decrease in the magnitude of signal from El Niño to La Niña years. A consistent change is seen in the predictability for surface pressure near the date line. In the western North and South Pacific, the predictability for boreal winter rainfall is higher in El Niño years than in La Niña years. This is mainly due to a stronger signal in El Niño years compared to La Niña years. The predictability for 500-hPa height increases over most of the Tropics in El Niño years. Over western tropical Pacific–Australia and East Asia, the predictability for boreal winter surface pressure and 500-hPa height is higher in El Niño years than in La Niña years. The predictability change for 500-hPa height is primarily due to the signal change.


2014 ◽  
Vol 58 (2) ◽  
pp. 302-325 ◽  
Author(s):  
Małgorzata Świerczyńska ◽  
Tomasz Niedzielski ◽  
Wiesław Kosek
Keyword(s):  
El Niño ◽  
El Nino ◽  
La Niña ◽  

2019 ◽  
Vol 46 (21) ◽  
pp. 12165-12172 ◽  
Author(s):  
Cong Guan ◽  
Shijian Hu ◽  
Michael J. McPhaden ◽  
Fan Wang ◽  
Shan Gao ◽  
...  

2014 ◽  
Vol 4 (1) ◽  
Author(s):  
Habib B. Dieng ◽  
Anny Cazenave ◽  
Benoit Meyssignac ◽  
Olivier Henry ◽  
Karina von Schuckmann ◽  
...  

AbstractInterannual fluctuations of the global mean sea level are highly correlated with El Niño-Southern Oscillation (ENSO) events, with positive/negative anomalies during El Niño/La Niña. In a previous study we showed that during the 1997 - 1998 El Niño, a positive anomaly observed in the global mean sea level was mostly caused by an increase of the ocean mass component rather than by steric (thermal) effects. This result was related to an increase of precipitation over the tropical ocean and a deficit in land water storage. In the present study, we investigate the effect of the recent 2008 and 2011 La Niña events on the satellite altimetry-based global mean sea level. We find that the large global mean sea level drop associated with the 2011 La Niña results from the combined decrease of the steric and ocean mass components, with a slightly dominant contribution from the latter. We show that the ocean mass contribution to the global mean sea level drop is spatially confined over the north eastern tropical Pacific (just as was found previously for the 1997 - 1998 El Niño, but with opposite sign). Corresponding ocean mass spatial pattern is closely correlated to observed sea level and steric spatial patterns over the duration of the La Niña event. This is also observed for previous El Niño and La Niña events. Such a drop in ocean mass during ENSO in the eastern part of the tropical Pacific has not been reported before. It is possibly related to a temporary decrease in the net precipitation over the north eastern Pacific (opposite situation was found during the 1997 - 1998 El Niño).


1999 ◽  
Vol 80 (5s) ◽  
pp. S1-S48 ◽  
Author(s):  
Gerald D. Bell ◽  
Michael S. Halpert ◽  
Chester F. Ropelewski ◽  
Vernon E. Kousky ◽  
Arthur V. Douglas ◽  
...  

The global climate during 1998 was affected by opposite extremes of the ENSO cycle, with one of the strongest Pacific warm episodes (El Niño) in the historical record continuing during January–early May and Pacific cold episode (La Niña) conditions occurring from JulyñDecember. In both periods, regional temperature, rainfall, and atmospheric circulation patterns across the Pacific Ocean and the Americas were generally consistent with those observed during past warm and cold episodes. Some of the most dramatic impacts from both episodes were observed in the Tropics, where anomalous convection was evident across the entire tropical Pacific and in most major monsoon regions of the world. Over the Americas, many of the El Niño– (La Niña–) related rainfall anomalies in the subtropical and extratropical latitudes were linked to an extension (retraction) of the jet streams and their attendant circulation features typically located over the subtropical latitudes of both the North Pacific and South Pacific. The regions most affected by excessive El Niño–related rainfall included 1) the eastern half of the tropical Pacific, including western Ecuador and northwestern Peru, which experienced significant flooding and mudslides; 2) southeastern South America, where substantial flooding was also observed; and 3) California and much of the central and southern United States during January–March, and the central United States during April–June. El Niño–related rainfall deficits during 1998 included 1) Indonesia and portions of northern Australia; 2) the Amazon Basin, in association with a substantially weaker-than-normal South American monsoon circulation; 3) Mexico, which experienced extreme drought throughout the El Niño episode; and 4) the Gulf Coast states of the United States, which experienced extreme drought during April–June 1998. The El Niño also contributed to extreme warmth across North America during January–May. The primary La Niña–related precipitation anomalies included 1) increased rainfall across Indonesia, and a nearly complete disappearance of rainfall across the east-central equatorial Pacific; 2) above-normal rains across northwestern, eastern, and northern Australia; 3) increased monsoon rains across central America and Mexico during October–December; and 4) dryness across equatorial eastern Africa. The active 1998 North Atlantic hurricane season featured 14 named storms (9 of which became hurricanes) and the strongest October hurricane (Mitch) in the historical record. In Honduras and Nicaragua extreme flooding and mudslides associated with Hurricane Mitch claimed more than 11 000 lives. During the peak of activity in August–September, the vertical wind shear across the western Atlantic, along with both the structure and location of the African easterly jet, were typical of other active seasons. Other regional aspects of the short-term climate included 1) record rainfall and massive flooding in the Yangtze River Basin of central China during June–July; 2) a drier and shorter-than-normal 1997/98 rainy season in southern Africa; 3) above-normal rains across the northern section of the African Sahel during June–September 1998; and 4) a continuation of record warmth across Canada during June–November. Global annual mean surface temperatures during 1998 for land and marine areas were 0.56°C above the 1961–90 base period means. This record warmth surpasses the previous highest anomaly of +0.43°C set in 1997. Record warmth was also observed in the global Tropics and Northern Hemisphere extratropics during the year, and is partly linked to the strong El Nino conditions during January–early May.


2013 ◽  
Vol 26 (13) ◽  
pp. 4816-4827 ◽  
Author(s):  
Nathaniel C. Johnson

Abstract It is now widely recognized that El Niño–Southern Oscillation (ENSO) occurs in more than one form, with the canonical eastern Pacific (EP) and more recently recognized central Pacific (CP) ENSO types receiving the most focus. Given that these various ENSO “flavors” may contribute to climate variability and long-term trends in unique ways, and that ENSO variability is not limited to these two types, this study presents a framework that treats ENSO as a continuum but determines a finite maximum number of statistically distinguishable representative ENSO patterns. A neural network–based cluster analysis called self-organizing map (SOM) analysis paired with a statistical distinguishability test determines nine unique patterns that characterize the September–February tropical Pacific SST anomaly fields for the period from 1950 through 2011. These nine patterns represent the flavors of ENSO, which include EP, CP, and mixed ENSO patterns. Over the 1950–2011 period, the most significant trends reflect changes in La Niña patterns, with a shift in dominance of La Niña–like patterns with weak or negative western Pacific warm pool SST anomalies until the mid-1970s, followed by a dominance of La Niña–like patterns with positive western Pacific warm pool SST anomalies, particularly after the mid-1990s. Both an EP and especially a CP El Niño pattern experienced positive frequency trends, but these trends are indistinguishable from natural variability. Overall, changes in frequency within the ENSO continuum contributed to the pattern of tropical Pacific warming, particularly in the equatorial eastern Pacific and especially in relation to changes of La Niña–like rather than El Niño–like patterns.


2011 ◽  
Vol 24 (20) ◽  
pp. 5423-5434 ◽  
Author(s):  
Jin-Yi Yu ◽  
Seon Tae Kim

Abstract This study examines preindustrial simulations from Coupled Model Intercomparison Project, phase 3 (CMIP3), models to show that a tendency exists for El Niño sea surface temperature anomalies to be located farther eastward than La Niña anomalies during strong El Niño–Southern Oscillation (ENSO) events but farther westward than La Niña anomalies during weak ENSO events. Such reversed spatial asymmetries are shown to force a slow change in the tropical Pacific Ocean mean state that in return modulates ENSO amplitude. CMIP3 models that produce strong reversed asymmetries experience cyclic modulations of ENSO intensity, in which strong and weak events occur during opposite phases of a decadal variability mode associated with the residual effects of the reversed asymmetries. It is concluded that the reversed spatial asymmetries enable an ENSO–tropical Pacific mean state interaction mechanism that gives rise to a decadal modulation of ENSO intensity and that at least three CMIP3 models realistically simulate this interaction mechanism.


Sign in / Sign up

Export Citation Format

Share Document