scholarly journals Reversed Spatial Asymmetries between El Niño and La Niña and Their Linkage to Decadal ENSO Modulation in CMIP3 Models

2011 ◽  
Vol 24 (20) ◽  
pp. 5423-5434 ◽  
Author(s):  
Jin-Yi Yu ◽  
Seon Tae Kim

Abstract This study examines preindustrial simulations from Coupled Model Intercomparison Project, phase 3 (CMIP3), models to show that a tendency exists for El Niño sea surface temperature anomalies to be located farther eastward than La Niña anomalies during strong El Niño–Southern Oscillation (ENSO) events but farther westward than La Niña anomalies during weak ENSO events. Such reversed spatial asymmetries are shown to force a slow change in the tropical Pacific Ocean mean state that in return modulates ENSO amplitude. CMIP3 models that produce strong reversed asymmetries experience cyclic modulations of ENSO intensity, in which strong and weak events occur during opposite phases of a decadal variability mode associated with the residual effects of the reversed asymmetries. It is concluded that the reversed spatial asymmetries enable an ENSO–tropical Pacific mean state interaction mechanism that gives rise to a decadal modulation of ENSO intensity and that at least three CMIP3 models realistically simulate this interaction mechanism.

2016 ◽  
Vol 29 (5) ◽  
pp. 1797-1808 ◽  
Author(s):  
Lee J. Welhouse ◽  
Matthew A. Lazzara ◽  
Linda M. Keller ◽  
Gregory J. Tripoli ◽  
Matthew H. Hitchman

Abstract Previous investigations of the relationship between El Niño–Southern Oscillation (ENSO) and the Antarctic climate have focused on regions that are impacted by both El Niño and La Niña, which favors analysis over the Amundsen and Bellingshausen Seas (ABS). Here, 35 yr (1979–2013) of European Centre for Medium-Range Weather Forecasts interim reanalysis (ERA-Interim) data are analyzed to investigate the relationship between ENSO and Antarctica for each season using a compositing method that includes nine El Niño and nine La Niña periods. Composites of 2-m temperature (T2m), sea level pressure (SLP), 500-hPa geopotential height, sea surface temperatures (SST), and 300-hPa geopotential height anomalies were calculated separately for El Niño minus neutral and La Niña minus neutral conditions, to provide an analysis of features associated with each phase of ENSO. These anomaly patterns can differ in important ways from El Niño minus La Niña composites, which may be expected from the geographical shift in tropical deep convection and associated pattern of planetary wave propagation into the Southern Hemisphere. The primary new result is the robust signal, during La Niña, of cooling over East Antarctica. This cooling is found from December to August. The link between the southern annular mode (SAM) and this cooling is explored. Both El Niño and La Niña experience the weakest signal during austral autumn. The peak signal for La Niña occurs during austral summer, while El Niño is found to peak during austral spring.


2006 ◽  
Vol 19 (24) ◽  
pp. 6433-6438 ◽  
Author(s):  
Edgar G. Pavia ◽  
Federico Graef ◽  
Jorge Reyes

Abstract The role of the Pacific decadal oscillation (PDO) in El Niño–Southern Oscillation (ENSO)-related Mexican climate anomalies during winter and summer is investigated. The precipitation and mean temperature data of approximately 1000 stations throughout Mexico are considered. After sorting ENSO events by warm phase (El Niño) and cold phase (La Niña) and prevailing PDO phase: warm or high (HiPDO) and cold or low (LoPDO), the authors found the following: 1) For precipitation, El Niño favors wet conditions during summers of LoPDO and during winters of HiPDO. 2) For mean temperature, cooler conditions are favored during La Niña summers and during El Niño winters, regardless of the PDO phase; however, warmer conditions are favored by the HiPDO during El Niño summers.


2015 ◽  
Vol 12 (6) ◽  
pp. 4405-4431 ◽  
Author(s):  
A. Olchev ◽  
A. Ibrom ◽  
O. Panferov ◽  
D. Gushchina ◽  
P. Propastin ◽  
...  

Abstract. The possible impact of El Niño–Southern Oscillation (ENSO) events on the main components of CO2 and H2O fluxes in a pristine mountainous tropical rainforest growing in Central Sulawesi in Indonesia is described. The fluxes were continuously measured using the eddy covariance method for the period from January 2004 to June 2008. During this period, two episodes of El Niño and one episode of La Niña were observed. All these ENSO episodes had moderate intensity and were of Central Pacific type. The temporal variability analysis of the main meteorological parameters and components of CO2 and H2O exchange showed a very high sensitivity of Evapotranspiration (ET) and Gross Primary Production (GPP) of the tropical rain forest to meteorological variations caused by both El Niño and La Niña episodes. Incoming solar radiation is the main governing factor that is responsible for ET and GPP variability. Ecosystem Respiration (RE) dynamics depend mainly on the air temperature changes and are almost insensitive to ENSO. Changes of precipitation due to moderate ENSO events did not cause any notable effect on ET and GPP, mainly because of sufficient soil moisture conditions even in periods of anomalous reduction of precipitation in the region.


2021 ◽  
Vol 8 ◽  
Author(s):  
Mickie R. Edwards ◽  
Susana Cárdenas-Alayza ◽  
Michael J. Adkesson ◽  
Mya Daniels-Abdulahad ◽  
Amy C. Hirons

Peru’s coastal waters are characterized by significant environmental fluctuation due to periodic El Niño- La Niña- Southern Oscillation (ENSO) events. This variability results in ecosystem-wide food web changes which are reflected in the tissues of the Peruvian fur seal (Arctocephalus australis). Stable isotope ratios (δ13C and δ15N) in Peruvian fur seal vibrissae (whiskers) are used to infer temporal primary production and dietary variations in individuals. Sea surface temperature anomaly (SSTA) recordings from the Niño 1+2 Index region captured corresponding ENSO conditions. Fluctuations in δ15N values were correlated to SSTA records, indicating that ENSO conditions likely impact the diet of these apex predators over time. Anomalous warm phase temperatures corresponded to decreased δ15N values, whereas cold phase anomalous conditions corresponded to increased δ15N values, potentially from upwelled, nutrient-rich water. Vibrissae δ13C values revealed general stability from 2004 to 2012, a moderate decline during 2013 (La Niña conditions) followed by a period of increased values concurrent with the 2014–2016 El Niño event. Both δ13C and δ15N values were inversely correlated to each other during the strongest El Niño Southern Oscillation event on record (2014–2016), possibly indicating a decline in production leading to an increase in food web complexity. Lower δ13C and δ15N values were exhibited in female compared to male fur seal vibrissae. Findings suggest ENSO conditions influence resource availability, possibly eliciting changes in pinniped foraging behavior as well as food web of the endangered Peruvian fur seal.


2017 ◽  
Vol 30 (4) ◽  
pp. 1327-1343 ◽  
Author(s):  
Ping Huang ◽  
Dong Chen

Abstract El Niño–Southern Oscillation (ENSO) is one of the most important sources of climate interannual variability. A prominent characteristic of ENSO is the asymmetric, or so-called nonlinear, local rainfall response to El Niño (EN) and La Niña (LN), in which the maximum rainfall anomalies during EN are located farther east than those during LN. In this study, the changes in rainfall anomalies during EN and LN are examined based on the multimodel ensemble mean results of 32 CMIP5 models under the representative concentration pathway 8.5 (RCP8.5) scenario. It is found that robust EN–LN asymmetric changes in rainfall anomalies exist. The rainfall anomalies during EN and LN both shift eastward and intensify under global warming, but the eastward shift during EN is farther east than that during LN. A simplified moisture budget decomposition method is applied to study the mechanism of the asymmetric response. The results show that the robust increase in mean-state moisture can enlarge the EN–LN asymmetry of the rainfall anomalies, and the spatial relative changes in mean-state SST with an El Niño–like pattern can shift the rainfall anomalies farther east during EN than during LN, enlarging the difference in the zonal locations of the rainfall response to EN and LN. The role of the relative changes in mean-state SST can also be interpreted as follows: the decreased zonal gradient of mean-state SST due to El Niño–like warming leads to a larger EN–LN asymmetry of rainfall anomalies under a future warming climate.


2010 ◽  
Vol 6 (3) ◽  
pp. 905-961
Author(s):  
J. H. Duke

Abstract. A sporadic phenomenon of internal tide resonance (ITR) in the western equatorial Pacific thermocline is shown to precede 11 of 12 major upturns in the Niño 3.4 index between 1992 and 2008. Observed ITR has up to 9 °C semidiurnal temperature excursions indicating thermocline heave, but is invisible in time resolution longer than one day. It is independent of westerly wind bursts (WWB). A hypothesis is advanced that (1) ITR dissipates vorticity, leading to Pacific countercurrent consolidation (PCC) by reducing the vortex stretching term in Sverdrup balance. The consequence of lost vorticity survives ephemeral ITR events; (2) The specific surface area of countercurrents is reduced by PCC, which reduces frictional opposition to zonal gradient pressure, which triggers eastward advection at El Niño onset; (3) PCC also accelerates transfer of potential energy to the "pycnostad" below the Equatorial Undercurrent. This shoals the equatorial thermocline, leading to a distinct mode of equatorially symmetric La Niña (ESLN) characterized by a winter monsoon cell above a "cold eye" that is separated from the South American continent, as in 1998; (4) Precessional southward intertropical convergence zone migration (ITCZ) is an alternate PCC trigger, but its effect is modulated by obliquity; and (5) ESLN causes global cooling in all timescales by (a) reduced Hadley cell water vapor production when its rising branch is above the cold eye, (b) equatorward shift in southern circumpolar westerlies due to Hadley cell constriction, (c) possible CO2 sequestration by increased EUC iron fertilized export production on the equator, and (d) possible adjacent cloud seeding by biogenic dimethyl sulphide. Surprising coincidences of WWB with perigean eclipses suggest a parallel atmospheric tide influence. Proposed PCC-ESLN forcing operates in multiple timescales, beginning where the annual cycle of strong equinoctial tides coincides with the minimum perigee cycle. This forcing corresponds with El Niño Southern Oscillation (ENSO) events in 1997, 2002, and 2006. Next, extreme central eclipses that perturb perigee-sysygy intervals also correspond with extreme ENSO events, notably in 1877, 1888, and 1982, and a 586 year cycle in the frequency of these eclipses corresponds with known stadial events in the past 4 thousand years. Contrast in the 586 year cycle increases with Earth eccentricity because it is the result of shorter synodic months at aphelion. Longer timescale forcing is by orbital control of the east-central Pacific ITCZ position, yielding a 10 thousand year fast ice sheet melt interval between March and September perihelion. But default ESLN is only interrupted when perihelion in March coincides with rising obliquity. A change in the phase relation between obliquity and precession from 1:2 to 3:5 or 2:5 may therefore explain skipped obliquity cycles after the mid-Pleistocene transition. A secular improvement in eclipse commensurability that parallels Cenozoic cooling is noted.


2021 ◽  
Vol 8 ◽  
Author(s):  
Muhamad Naimullah ◽  
Yan-Lun Wu ◽  
Ming-An Lee ◽  
Kuo-Wei Lan

The swimming crabs is a crucial predator species in benthic habitats and a high value in commercial fishery industries in subtropical and tropical Asia. The climate variability caused by El Niño–Southern Oscillation (ENSO) events has substantial impacts on the catch and habitat of this species. In this study, a weighted habitat suitability index (HSI) model was constructed using logbooks and voyage data records from Taiwanese crab vessels (2013–2019) with the addition of environmental variables to examine the influence of ENSO events on catch rates (CRs) and habitat suitability for Charybdis feriatus, Portunus pelagicus, and Portunus sanguinolentus in the Taiwan Strait (TS). The autumn (September–October) is the major fishing season for catching these three swimming crab species in the TS. A high CR of P. sanguinolentus was observed across the TS, whereas high CRs of P. pelagicus and C. feriatus were recorded in areas in the southern and northern TS, respectively, during autumn. Moreover, the CRs for C. feriatus and P. pelagicus were higher (>7.0 and >8.0 kg/h) during La Niña events, with the increase being more than 40.0% compared with the CRs under normal and El Niño events in autumn. For P. sanguinolentus, the CRs were higher during both La Niña and El Niño events (>8.0 kg/h) compared with normal years. The high CRs for C. feriatus and P. sanguinolentus during autumn in La Niña years co-occurred with high sea temperature and low salinity, whereas the high CR of P. pelagicus co-occurred with high sea temperature and high salinity. Furthermore, the high CRs for C. feriatus and P. pelagicus were observed in areas with high HSI in the La Niña years but were distributed more widely with a lower HSI during normal and El Niño years. The low CRs for C. feriatus and P. pelagicus during normal and El Niño years and the low CR for P. sanguinolentus in normal years during autumn were highly consistent with substantial shrinkage of suitable habitats. Our findings suggest that ENSO events strongly affected the catch and habitat suitability of C. feriatus, P. pelagicus, and P. sanguinolentus during autumn in the TS.


2020 ◽  
pp. 1-61
Author(s):  
Hanjie Fan ◽  
Bohua Huang ◽  
Song Yang ◽  
Wenjie Dong

AbstractThis study investigates the mechanisms behind the Pacific Meridional Mode (PMM) in influencing the development of El Niño-Southern Oscillation (ENSO) event and its seasonal predictability. To examine the relative importance of various factors that may modulate the efficiency of the PMM influence, a series of experiments are conducted for selected ENSO events with different intensity using the Community Earth System Model, in which ensemble predictions are made from slightly different ocean initial states but under a common prescribed PMM surface heat flux forcing. Overall, the matched PMM forcing to ENSO, i.e., a positive (negative) PMM prior to an El Niño (a La Niña), plays an enhancing role, while a mismatched PMM forcing plays a damping role. For the matched cases, a positive PMM event enhances an El Niño more strongly than a negative PMM event enhances a La Niña. This asymmetry in influencing ENSO largely originates from the asymmetry in intensity between the positive and negative PMM events in the tropics, which can be explained by the nonlinearity in the growth and equatorward propagation of the PMM-related anomalies of sea surface temperature (SST) and surface zonal wind through both wind-evaporation-SST feedback and summer deep convection response. Our model results also indicate that the PMM acts as a modulator rather than a trigger for the occurrence of ENSO event. Furthermore, the response of ENSO to an imposed PMM forcing is modulated by the preconditioning of the upper-ocean heat content, which provides the memory for the coupled low-frequency evolution in the tropical Pacific.


2021 ◽  
pp. 1-47
Author(s):  
XIAODAN YANG ◽  
YAJUAN SONG ◽  
MENG WEI ◽  
YUHUAN XUE ◽  
ZHENYA SONG

AbstractIn this paper, the different effects of the eastern equatorial Pacific (EP) and central equatorial Pacific (CP) El Niño-Southern Oscillation (ENSO) events on interannual variation in the diurnal sea surface temperature (SST) are explored in both the Niño 3 and Niño 4 regions. In the Niño 3 region, the diurnal SST anomaly (DSSTA) is negative during both EP and CP El Niño events and becomes positive during both EP and CP La Niña events. However, the DSSTA in the Niño 4 region is positive in El Niño years and negative in La Niña years, which is opposite to that in the Niño 3 region. Further analysis indicates that the incident shortwave radiation (SWR), wind stress (WS), and upward latent heat flux (LHF) are the main factors causing the interannual variation in the DSST. In the Niño 3 region, the decreased/increased SWR and the increased (decreased) LHF lead to the negative (positive) DSSTA in EP El Niño (La Niña) years. In addition, the enhanced (reduced) WS and the increased (decreased) LHF cause the negative (positive) DSSTA in CP El Niño (La Niña) years. In the Niño 4 region, the reduced (enhanced) trade wind plays a key role in producing in the positive (negative) DSSTA, while the decreased (increased) SWR has an opposite effect that reduces/increases the range of the DSSTA during both EP and CP El Niño (La Niña) events.


2015 ◽  
Vol 28 (15) ◽  
pp. 6133-6159 ◽  
Author(s):  
Andrew M. Chiodi ◽  
D. E. Harrison

Abstract El Niño–Southern Oscillation (ENSO) events are associated with particular seasonal weather anomalies in many regions around the planet. When the statistical links are sufficiently strong, ENSO state information can provide useful seasonal forecasts with varying lead times. However, using conventional sea surface temperature or sea level pressure indices to characterize ENSO state leads to many instances of limited forecast skill (e.g., years identified as El Niño or La Niña with weather anomalies unlike the average), even in regions where there is considerable ENSO-associated anomaly, on average. Using outgoing longwave radiation (OLR) conditions to characterize ENSO state identifies a subset of the conventional ENSO years, called OLR El Niño and OLR La Niña years herein. Treating the OLR-identified subset of years differently can both usefully strengthen the level of statistical significance in the average (composite) and also greatly reduce the year-to-year deviations in the composite precipitation anomalies. On average, over most of the planet, the non-OLR El Niño and non-OLR La Niña years have much more limited statistical utility for precipitation. The OLR El Niño and OLR La Niña indices typically identify years in time to be of use to boreal wintertime and later seasonal forecasting efforts, meaning that paying attention to tropical Pacific OLR conditions may offer more than just a diagnostic tool. Understanding better how large-scale environmental conditions during ENSO events determine OLR behavior (and deep atmospheric convection) will lead to improved seasonal precipitation forecasts for many areas.


Sign in / Sign up

Export Citation Format

Share Document