dipole structure
Recently Published Documents


TOTAL DOCUMENTS

81
(FIVE YEARS 22)

H-INDEX

15
(FIVE YEARS 3)

2021 ◽  
Vol 21 (5) ◽  
pp. 430-438
Author(s):  
Myungwan Lyou ◽  
Gunyoung Kim ◽  
Bomson Lee

A new design method for RLC reactive absorbers is presented. This method is based on closed-form solutions to help realize the widest absorption bandwidth for an arbitrarily specified thickness. The solutions for the RLC values of the reactive screen are derived using an equivalent circuit in which the thickness of the substrate used, the permittivity and tangential loss of the substrate, and the frequency are all considered. A perfect match and maximum bandwidth at a design frequency can be achieved with the proposed method. Various aspects of the absorber characteristics, depending on the thickness and loss of the substrate, are analyzed using the presented solutions and electromagnetic (EM) simulations. To validate the proposed design method, an X-band microwave absorber with a crossed-dipole structure patterned on a silver nanowire resistive film is designed, fabricated, and measured. The substrate electrical thickness of the absorber is 70° at 10 GHz, with a permittivity of 2.2. The 90% absorption bandwidth is 8 GHz in the frequency range of 8.2–16.2 GHz. The measured absorption agrees well with the results obtained using circuit and EM simulations.


Author(s):  
Ghina Esa Aprilia ◽  
Umaisaroh Umaisaroh ◽  
Ahmad Firdausi ◽  
Mudrik Alaydrus
Keyword(s):  

Author(s):  
Ai-xia Wang ◽  
Shaobo Qu ◽  
Jiafu Wang ◽  
Jieqiu Zhang ◽  
Wenjie Wang ◽  
...  

2021 ◽  
Vol 13 (6) ◽  
pp. 1071
Author(s):  
Taekyun Kim ◽  
Hyeong-Jun Jo ◽  
Jae-Hong Moon

Based on satellite measurements and oceanic reanalysis data, it has been possible to investigate the spatiotemporal variability of the mesoscale phenomena in the northern part of the East Sea (NES) where direct observations of currents and hydrographical conditions are scarce. For the first time, this study identifies the detailed spatiotemporal structure of the mesoscale features in the NES and the mechanism of its occurrence and evolution, which have important consequences on the distribution of the intermediate water masses in the East Sea. Here, we show that mesoscale thermodynamic phenomena in the northwestern region of the East Sea are characterized by a dipole structure associated with positive and negative sea surface height anomalies. These result in a strong thermal gradient between the seasonally non-persistent anomalies, which emerge and strengthen during late fall and early winter. In contrast to the previous finding of the relationship between winter monsoon winds and mesoscale features in the NES, we found that this relationship is crucial only to the emergence of the mesoscale phenomena. Consequently, we present a new perspective on the evolution mechanism of the mesoscale features in the NES. Of direct significance to the present study, thermohaline transport into the northwestern region of the East Sea regulates the strengthening and weakening of mesoscale features in the NES. Wind forcing may contribute to the emergence of the mesoscale features in the NES and then the intensification of the mesoscale activities is attributed to the intrusion of warm and fresh surface water advected from the southern part of the East Sea.


Author(s):  
Prafulla Kumar Swain ◽  
Siva Prasad Dora ◽  
Suryanarayana Murthy Battula ◽  
Ashok K Barik

The present research focuses on the timing of wing–wing interaction that benefits the aerodynamic force of a dragonfly in hovering flight at Reynolds number 1350. A 3-D numerical simulation method, called the system coupling, was utilised by implementing a two-way coupling between the transient structural and flow analysis. We further explore the aerodynamic forces produced at different phase angles on the forewing and hindwing during the hovering flight condition of a dragonfly. A pair of dragonfly wings is simulated to obtain the force generated during flapping at a 60° inclination stroke plane angle with respect to the horizontal. The hovering flight is simulated by varying the phase angle and the inter-distance between the two wings. We observe a significant enhancement in the lift (16%) of the hindwing when it flaps in-phase with the forewing and closer to the forewing, maintaining an inter-wing distance of 1.2 cm (where centimetre is the mean chord length). However, for the same condition, the lift of the hindwing reduces by 9% when the wings are out of phase/counterstroke flapping. These benefits and drawbacks are dependent on the timing of the interactions between the forewing and hindwing. The time of interaction of wake capture, wing–wing interaction, dipole structure and development of root vortex are examined by 2-D vorticity of the flow field and isosurface of the 3-D model dragonfly. From the isosurface, we found that the root vortex elicited at the root of the hindwing in counter-flapping creates an obstacle for the shedding of wake vortices, which results in reduction of vertical lift during the upstroke of flapping. Hence, at the supination stage, a dragonfly uses a high rotation angle for the hovering flight mode. It is observed that the system coupling method was found to be more efficient and exhibited better performance. The present numerical methodology shows a very close match to the previously reported results.


2021 ◽  
pp. 79-82
Author(s):  
S.S. Zamay ◽  
◽  
V.S. Prokopenko ◽  
K.A. Lukyanenko ◽  
A.E. Sokolov ◽  
...  

The aim of the research. To investigate the antitumor effi cacy of three-layer magnetic nanodiscs (Au / Ni / Au) with a quasi-dipole structure, functionalized with biorecognizing molecules of a tumor. Material and methods. Th ree-layer magnetic nanodiscs (Au / Ni / Au) 500 nm in size (were obtained by micro- and nanoelectronic technologies. Aptamers to ascites cells of Ehrlich carcinoma were used to functionalize magnetic nanodiscs. Th iol groups were used to bind disks to aptamers. As a model of tumor cells Ehrlich’s ascites carcinoma cells were used, and the cells were magnetically infl uenced by an alternating magnetic fi eld (50 Hz, 100 Oe). Results. Magnetic nanodiscs have magnetic anisotropy, which proves their high sensitivity to magnetic stimuli. Magnetic nanodiscs start the processes of cell death in the culture of ascites cells for two hours. Presumably, magnetic nanodiscs use aptamers to bind to the cell membrane protein fi lamin A, a structural component of the cytoskeleton that plays an important role in cell signaling and, when exposed to a variable magnetic, cause destruction of the cell membrane and cell death. Conclusion. Microsurgery of malignant tumors using a nanoscalpel based on functionalized ligands that recognize tumor sites can be used to remove single tumor cells during surgery


2020 ◽  
pp. 1-17
Author(s):  
Yuchao Zhu ◽  
Rong-Hua Zhang ◽  
Delei Li ◽  
Dake Chen

AbstractThe tropical thermocline plays an important role in regulating equatorial sea surface temperature (SST); at present, it is still poorly simulated in the state-of-the-art climate models. In this paper, thermocline biases in the tropical North Pacific are investigated using the newly released CMIP6 historical simulations. It is found that CMIP6 models tend to produce an overly shallow thermocline in the northwestern tropics, accompanied by a deep thermocline in the northeastern tropics. A pronounced thermocline strength bias arises in the tropical northeastern Pacific, demonstrating a dipole structure with a sign change at about 8° N. These thermocline biases are accompanied with biases in the simulations of oceanic circulations, including a too weak North Equatorial Counter Current (NECC), a reduction in water exchanges between the subtropics and the equatorial regions, and an eastward extension of the equatorward interior water transport. The causes of these thermocline biases are further analyzed. The thermocline bias is primarily caused by the model deficiency in simulating the surface wind stress curl, which can be further attributed to the longstanding double-ITCZ bias in the tropical North Pacific. Besides, thermocline strength bias can be partly attributed to the poor prescription of oceanic background diffusivity. By constraining the diffusivity to match observations, the thermocline strength in the tropical northeastern Pacific is greatly increased.


2020 ◽  
Vol 37 (6) ◽  
pp. 067801
Author(s):  
Meng-Yao Yan ◽  
Bi-Jun Xu ◽  
Zhi-Chao Sun ◽  
Zhen-Dong Wu ◽  
Bai-Rui Wu

Sign in / Sign up

Export Citation Format

Share Document