pacific warm pool
Recently Published Documents


TOTAL DOCUMENTS

366
(FIVE YEARS 70)

H-INDEX

50
(FIVE YEARS 4)

Author(s):  
In‐Hong Park ◽  
Sang‐Wook Yeh ◽  
Seung‐Ki Min ◽  
Seok‐Woo Son

2021 ◽  
Author(s):  
Petter Lars Hällberg ◽  
Frederik Schenk ◽  
Kweku Afrifa Yamoah ◽  
Xueyuen Kuang ◽  
Rienk Hajo Smittenberg

Author(s):  
Chai Boyu ◽  
Feng Xu ◽  
Jianjun Xu ◽  
Han Li-guo ◽  
CHEN Si-qi ◽  
...  

Abstract Based on various statistical methods and empirical orthogonal function (EOF) analysis, this study analyzes the correlation of radiation flux of Northwest Pacific in the 100 years scale with the western Pacific warm pool and typhoon development. The key results are as follows. First, the surface downwelling longwave radiation (SDLR) received by key areas in Northwest Pacific significantly increased over the past 170 years. The surface downwelling shortwave radiation (SDSR) decreased, and TOA (Top of Atmosphere) incident shortwave radiation (TISR) slightly fluctuated and increased in the 11a (11 years) period. Second, there was the strongest correlation between the Western Pacific warm pool and SDLR, and both increased continuously. Third, since 1945, there has been a tendency of increasing after decreasing in the annual frequency and the share of severe typhoons, and the formation area distribution of typhoons has turned more even. Taking 1998 as a cut-off point, before 1998, there was no obvious correlation between the strong typhoon frequency and SDLR. However, such correction became stronger after 1998. They were affected by the changes of SDLR, SDSR, TISR, vapor, vorticity, vertical velocity, SST and h100 . Forth, the SDLR and TISR are major factors influencing the Western Pacific warm pool, typhoon motion and other varieties. While SDLR mainly increases in the tropical areas, TISR tends to fluctuate and increase slightly. Their changes are consistent with the change general characteristics of strengthening of typhoon.


2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Shuai Zhang ◽  
Zhoufei Yu ◽  
Xun Gong ◽  
Yue Wang ◽  
Fengming Chang ◽  
...  

AbstractModern observations have presented linkages between subsurface waters of the western Pacific warm pool and both El Niño/Southern Oscillation-related and extratropic-controlled upper-ocean stratification on interannual timescales. Moreover, studies have showed that such controls may operate on orbital cycles, although the details remain unclear. Here we present paired temperature and salinity reconstructions for the surface and thermocline waters in the central western Pacific warm pool over the past 360,000 years, as well as transit modeling results from an Earth system model. Our results show that variations in subsurface temperature and salinity in the western Pacific warm pool have consistently correlated with the shallow meridional overturning cell over the past four glacial-interglacial cycles, and they vary on eccentricity and precession cycles. The shallow meridional overturning cell regulates subsurface waters of the western Pacific warm pool by changing subtropical surface water density and thus equatorial upper-ocean stratification, acting as an El Niño/Southern Oscillation-like process in the precession band. Therefore, the western Pacific warm pool is critical in connecting the austral shallow meridional overturning cell to the Earth’s climate system on orbital timescales.


2021 ◽  
Vol 13 (22) ◽  
pp. 4676
Author(s):  
Deli Meng ◽  
Wanjiao Song ◽  
Qing Dong ◽  
Zi Yin ◽  
Wenbo Zhao

The Tibetan Plateau (TP), atmosphere, and Indo-Pacific warm pool (IPWP) together constitute a regional land–atmosphere–ocean water vapor transport system. This study uses remote sensing data, reanalysis data, and observational data to explore the spatiotemporal variations of the summer atmospheric water cycle over the TP and its possible response to the air-sea interaction in the IPWP during the period 1958–2019. The results reveal that the atmospheric water cycle process over the TP presented an interannual and interdecadal strengthening trend. The climatic precipitation recycle ratio (PRR) over the TP was 18%, and the stronger the evapotranspiration, the higher the PRR. On the interdecadal scale, the change in evapotranspiration has a significant negative correlation with the Pacific Decadal Oscillation (PDO) index. The variability of the water vapor transport (WVT) over the TP was controlled by the dynamic and thermal conditions inside the plateau and the external air-sea interaction processes of the IPWP. When the summer monsoon over the TP was strong, there was an anomalous cyclonic WVT, which increased the water vapor budget (WVB) over the TP. The central and eastern tropical Pacific, the maritime continent and the western Indian Ocean together constituted the triple Sea Surface Temperature (SST) anomaly, which enhanced the convective activity over the IPWP and induced a significant easterly wind anomaly in the middle and lower troposphere, and then generated pronounced easterly WVT anomalies from the tropical Pacific to the maritime continent and the Bay of Bengal. Affected by the air-sea changes in the IPWP, the combined effects of the upstream strengthening and the downstream weakening in the water vapor transport process, directly and indirectly, increased the water vapor transport and budget of TP.


2021 ◽  
Author(s):  
Hisahiro Takashima ◽  
Yugo Kanaya ◽  
Saki Kato ◽  
Martina M. Friedrich ◽  
Michel Van Roozendael ◽  
...  

Abstract. Iodine compounds destroy ozone (O3) in the global troposphere and form new aerosols, thereby affecting the global radiative balance. However, few reports have described the latitudinal distribution of atmospheric iodine compounds. This work reports iodine monoxide (IO) measurements over unprecedented sampling areas from Arctic to the Southern Hemisphere and spanning sea surface temperatures (SSTs) of approximately 0 °C to 31.5 °C. The highest IO concentrations were observed over the Western Pacific warm pool (WPWP), where O3 minima were also measured. There, negative correlation was found between O3 and IO mixing ratios at extremely low O3 concentrations. This correlation is not explained readily by the “O3-dependent” oceanic fluxes of photolabile inorganic iodine compounds, the dominant source in recent global-scale chemistry-transport models representing iodine chemistry, and rather implies that “O3-independent” pathways can be similarly important in the WPWP. The O3-independent fluxes result in a 15 % greater O3 loss than that estimated for O3-dependent processes alone. The daily O3 loss rate related to iodine over the WPWP is as high as approximately 2 ppbv despite low O3 concentrations of ~10 ppbv, with the loss being up to 100 % greater than that without iodine. This finding suggests that warming SST driven by climate change may affect the marine atmospheric chemical balance through iodine–ozone chemistry.


Sign in / Sign up

Export Citation Format

Share Document