A new approach for load flow analysis of integrated AC-DC power systems using sequential modified Gauss-Seidel methods

2011 ◽  
Vol 22 (4) ◽  
pp. 421-432 ◽  
Author(s):  
Sabir Messalti ◽  
Saad Belkhiat ◽  
Shahrokh Saadate ◽  
Damien Flieller
Author(s):  
Shenghu Li

The induction generators (IGs) are basic to wind energy conversion. They produce the active power and consume the reactive power, with the voltage characteristics fragile compared with that of the synchronous generators and doubly-fed IGs. In the stressed system states, they may intensify var imbalance, yielding undesirable operation of zone 3 impedance relays.In this paper, the operation characteristics of the zone 3 relays in the wind power systems is studied. With the theoretical and load flow analysis, it is proved that the equivalent impedance of the IGs lies in the 2nd quadrature, possibly seen as the backward faults by the mho relays, i.e. the apparent impedance enters into the protection region from the left side. The undesirable operation may be caused by more wind power, larger load, less var compensation, and larger torque angle.


2005 ◽  
Vol 42 (4) ◽  
pp. 369-382 ◽  
Author(s):  
T. Yalcinoz

This paper presents a software package developed in Matlab for teaching power systems analysis and operation. The software package is used to support and enhance power engineering education at both undergraduate and postgraduate levels. The application programs in this package include fault analysis, load flow analysis, transient stability, economic dispatch, unit commitment and load forecasting. All modules of the package are independent of each other. The students or researchers can make copies of the software to study and can modify any module of the package.


2020 ◽  
Vol 12 (1) ◽  
pp. 70-83
Author(s):  
Shabbiruddin ◽  
Sandeep Chakravorty ◽  
Karma Sonam Sherpa ◽  
Amitava Ray

The selection of power sub-station location and distribution line routing in power systems is one of the important strategic decisions for both private and public sectors. In general, contradictory factors such as availability, and cost, affects the appropriate selection which adheres to vague and inexact data. The work presented in this research deals with the development of models and techniques for planning and operation of power distribution system. The work comprises a wider framework from the siting of a sub-station to load flow analysis. Work done also shows the application of quantum- geographic information system (Q-GIS) in finding load point coordinates and existing sub-station locations. The proposed integrated approach provides realistic and reliable results, and facilitates decision makers to handle multiple contradictory decision perspectives. To accredit the proposed model, it is implemented for power distribution planning in Bihar which consists of 9 divisions. A Cubic Spline Function-based load flow analysis method is developed to validate the proposal.


Sign in / Sign up

Export Citation Format

Share Document