scholarly journals On the role of (weak) compressibility for fluid‐structure interaction solvers

2019 ◽  
Vol 92 (2) ◽  
pp. 129-147 ◽  
Author(s):  
Andrea La Spina ◽  
Christiane Förster ◽  
Martin Kronbichler ◽  
Wolfgang A. Wall
Fluids ◽  
2021 ◽  
Vol 6 (3) ◽  
pp. 95
Author(s):  
Stéphane Vincent ◽  
Jean-Paul Caltagirone

The unification of the laws of fluid and solid mechanics is achieved on the basis of the concepts of discrete mechanics and the principles of equivalence and relativity, but also the Helmholtz–Hodge decomposition where a vector is written as the sum of divergence-free and curl-free components. The derived equation of motion translates the conservation of acceleration over a segment, that of the intrinsic acceleration of the material medium and the sum of the accelerations applied to it. The scalar and vector potentials of the acceleration, which are the compression and shear energies, give the discrete equation of motion the role of conservation law for total mechanical energy. Velocity and displacement are obtained using an incremental time process from acceleration. After a description of the main stages of the derivation of the equation of motion, unique for the fluid and the solid, the cases of couplings in simple shear and uniaxial compression of two media, fluid and solid, make it possible to show the role of discrete operators and to find the theoretical results. The application of the formulation is then extended to a classical validation case in fluid–structure interaction.


2009 ◽  
Vol 46 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Ryo Torii ◽  
Marie Oshima ◽  
Toshio Kobayashi ◽  
Kiyoshi Takagi ◽  
Tayfun E. Tezduyar

2017 ◽  
Vol 21 (7) ◽  
pp. 2484-2511 ◽  
Author(s):  
Kwong Ming Tse ◽  
Long Bin Tan ◽  
Mohamad Ali Bin Sapingi ◽  
Melanie Franklyn ◽  
Peter Vee Sin Lee ◽  
...  

Background Blast-induced traumatic brain injury is the most prevalent injury sustained by combat soldiers at the frontline. The current study aims to investigate the effectiveness of composite polycarbonate-aerogel face shields with different configurations in mitigating blast-induced brain injuries. Method A series of dynamic fluid–structure interaction simulations of a helmeted head subjected to a frontal free field blast was performed, to evaluate the effectiveness of the current conventional polycarbonate face shield and three other composite face shields with different configurations when exposed to a frontal free-field blast. Results The simulation results demonstrated that the sandwiched structured face shields of polycarbonate and aerogel provided superior blast attenuation than a single-layered polycarbonate face shield. The alternate multi-layered transparent materials of high and low densities provided the best attenuation of blast pressure transmission to the head, with the polycarbonate exterior shell casing contributing to the structural integrity of the face shield, while the lower dense aerogel filler providing high acoustic impedance to blast wave transmission. Conclusion This study provides further insights on future development and design of personal protective equipment in mitigating blast-induced injuries to the head.


2018 ◽  
Vol 85 (11) ◽  
Author(s):  
Hannes L. Gauch ◽  
Francesco Montomoli ◽  
Vito L. Tagarielli

This study investigates the significance of fluid–structure interaction (FSI) effects on structural response to pressure wave and shock wave loading. Finite element (FE) simulations and one-dimensional (1D) analytical models are used to compare the responses of simple structures in presence and absence of FSI. Results are provided in nondimensional form and allow rapid estimation of the significance of FSI. The cases of a square elastic plate in bending and a square rigid-perfectly plastic plate undergoing membrane stretching are discussed in detail. We deduce simple formulae to identify scenarios in which effects of FSI can be neglected.


Sign in / Sign up

Export Citation Format

Share Document