interaction modeling
Recently Published Documents


TOTAL DOCUMENTS

446
(FIVE YEARS 118)

H-INDEX

36
(FIVE YEARS 6)

Materials ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7235
Author(s):  
Ionut Lambrescu ◽  
Catalin Teodoriu ◽  
Mahmood Amani

Well integrity is of high importance during the entire well life span especially when renewable energy resources such as geothermal are designed to cover the increasing world energy demand. Many studies have documented the importance of the casing–cement interfacial bonding to ensure critical well integrity achievements; however, laboratory experiments and field data are not always aligned. Furthermore, Finite Element Analysis shows relatively high discrepancies compared with the results of various scholarly published works. The limitations in the FEA are most probably generated by the casing–cement interaction modeling parameters. Typically, the contact between casing and cement is modeled using the so-called CZM method, which includes the shear debonding process into the FEA. Several setups have been used in the past to determine the interfacial casing–cement bonding shear strength. Some of these setups are briefly summarized herein. The novelty of this paper consists in the combination of a relatively simple experimental setup with the finite element modeling of the experiment itself to demonstrate that it is important to acquire accurate laboratory data for debonding simulations and, thus, to improve the well integrity prediction. The aim of this paper is to better understand the limitations of the finite element method when modeling shear bonding of the cement and, in the same, to verify that the proposed experimental setup can be modelled using numerical approaches. The successful numerical simulation can later be used for upscaled models. The results confirm the experimental push down setup and aid engineers to further understand and validate CZM models and optimize the well design to achieve maximum well integrity potential. Our results are within 1% error from the average field data.


2021 ◽  
Author(s):  
Theodore G. Jones ◽  
Yu-hsin Chen ◽  
Bahman Hafizi ◽  
Luke Johnson ◽  
Daniel Gordon ◽  
...  

2021 ◽  
Vol 147 (3) ◽  
pp. 04021041
Author(s):  
Yangmin Ding ◽  
Hao Wang ◽  
Junyu Qian ◽  
Haichao Zhou

2021 ◽  
Author(s):  
John Steuben ◽  
John Michopoulos ◽  
Athanasios Iliopoulos ◽  
Benjamin Graber ◽  
Andrew J. Birnbaum

Sign in / Sign up

Export Citation Format

Share Document