structural integrity
Recently Published Documents


TOTAL DOCUMENTS

7166
(FIVE YEARS 2059)

H-INDEX

101
(FIVE YEARS 16)

2022 ◽  
Vol 12 (2) ◽  
pp. 878
Author(s):  
Pedro O. Santos ◽  
Gustavo P. Carmo ◽  
Ricardo J. Alves de Sousa ◽  
Fábio A. O. Fernandes ◽  
Mariusz Ptak

The human head is sometimes subjected to impact loads that lead to skull fracture or other injuries that require the removal of part of the skull, which is called craniectomy. Consequently, the removed portion is replaced using autologous bone or alloplastic material. The aim of this work is to develop a cranial implant to fulfil a defect created on the skull and then study its mechanical performance by integrating it on a human head finite element model. The material chosen for the implant was PEEK, a thermoplastic polymer that has been recently used in cranioplasty. A6 numerical model head coupled with an implant was subjected to analysis to evaluate two parameters: the number of fixation screws that enhance the performance and ensure the structural integrity of the implant, and the implant’s capacity to protect the brain compared to the integral skull. The main findings point to the fact that, among all tested configurations of screws, the model with eight screws presents better performance when considering the von Mises stress field and the displacement field on the interface between the implant and the skull. Additionally, under the specific analyzed conditions, it is observable that the model with the implant offers more efficient brain protection when compared with the model with the integral skull.


2022 ◽  
Vol 17 (1) ◽  
Author(s):  
Daewon Kang ◽  
Sourav Sarkar ◽  
Kyung-Soo Kim ◽  
Soohyun Kim

AbstractThin-film saturable absorbers (SAs) are extensively used in mode-locked fiber laser due to the robust and simple application methods that arise because SAs are alignment-free and self-standing. Single-walled carbon nanotubes (SWCNTs) are the most suitable low dimensional material uesd for SAs because of their high nonlinearity and the wavelength control of absorption based on tube diameters. The most challenging problem with the use of CNT-based thin film SAs is thermal damage caused during high power laser operation, which mainly occurs due to aggregation of CNTs. We have demonstrated improved thermal damage resistance and enhanced durability of a film-type SA based on functionalization of SWCNTs, which were subjected to a mechanical functionalization procedure to induce covalent structural modifications on the SWCNT surface. Increased intertube distance was shown by X-ray diffraction, and partial functionalization was shown by Raman spectroscopy. This physical change had a profound effect on integration with the host polymer and resolved aggregation problems. A free-standing SA was fabricated by the drop casting method, and improved uniformity was shown by scanning electron microscopy. The SA was analyzed using various structural and thermal evaluation techniques (Raman spectroscopy, thermogravimetric analysis, etc.). Damage tests at different optical powers were also performed. To the best of our knowledge, a comprehensive analysis of a film-type SA is reported here for the first time. The partially functionalized SWCNT (fSWCNT) SA shows significant structural integrity after intense damage tests and a modulation depth of 25.3%. In passively mode-locked laser operation, a pulse width of 152 fs is obtained with a repetition rate of 77.8 MHz and a signal-to-noise ratio of  75 dB. Stable operation of the femtosecond fiber laser over 200 h verifies the enhanced durability of the fSWCNT SA.


Energies ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 579
Author(s):  
Taimoor Asim ◽  
Sheikh Zahidul Islam ◽  
Arman Hemmati ◽  
Muhammad Saif Ullah Khalid

Offshore wind turbines are becoming increasingly popular due to their higher wind energy harnessing capabilities and lower visual pollution. Researchers around the globe have been reporting significant scientific advancements in offshore wind turbines technology, addressing key issues, such as aerodynamic characteristics of turbine blades, dynamic response of the turbine, structural integrity of the turbine foundation, design of the mooring cables, ground scouring and cost modelling for commercial viability. These investigations range from component-level design and analysis to system-level response and optimization using a multitude of analytical, empirical and numerical techniques. With such wide-ranging studies available in the public domain, there is a need to carry out an extensive yet critical literature review on the recent advancements in offshore wind turbine technology. Offshore wind turbine blades’ aerodynamics and the structural integrity of offshore wind turbines are of particular importance, which can lead towards system’s optimal design and operation, leading to reduced maintenance costs. Thus, in this study, our focus is to highlight key knowledge gaps in the scientific investigations on offshore wind turbines’ aerodynamic and structural response. It is envisaged that this study will pave the way for future concentrated efforts in better understanding the complex behavior of these machines.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 603
Author(s):  
Natalia Rońda ◽  
Krzysztof Grzelak ◽  
Marek Polański ◽  
Julita Dworecka-Wójcik

This work investigates the effect of layer thickness on the microstructure and mechanical properties of M300 maraging steel produced by Laser Engineered Net Shaping (LENS®) technique. The microstructure was characterized using light microscopy (LM) and scanning electron microscopy (SEM). The mechanical properties were characterized by tensile tests and microhardness measurements. The porosity and mechanical properties were found to be highly dependent on the layer thickness. Increasing the layer thickness increased the porosity of the manufactured parts while degrading their mechanical properties. Moreover, etched samples revealed a fine cellular dendritic microstructure; decreasing the layer thickness caused the microstructure to become fine-grained. Tests showed that for samples manufactured with the chosen laser power, a layer thickness of more than 0.75 mm is too high to maintain the structural integrity of the deposited material.


Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 567
Author(s):  
Mikhail Linderov ◽  
Alexander Brilevsky ◽  
Dmitry Merson ◽  
Alexei Danyuk ◽  
Alexei Vinogradov

Magnesium alloys are contemporary candidates for many structural applications of which medical applications, such as bioresorbable implants, are of significant interest to the community and a challenge to materials scientists. The generally poor resistance of magnesium alloys to environmentally assisted fracture, resulting, in particular, in faster-than-desired bio-corrosion degradation in body fluids, strongly impedes their broad uptake in clinical practice. Since temporary structures implanted to support osteosynthesis or healing tissues may experience variable loading, the resistance to bio-corrosion fatigue is a critical issue that has yet to be understood in order to maintain the structural integrity and to prevent the premature failure of implants. In the present communication, we address several aspects of the corrosion fatigue behaviour of magnesium alloys, using the popular commercial ZK60 Mg-Zn-Zr alloy as a representative example. Specifically, the effects of the testing frequency, surface roughness and metallic coatings are discussed in conjunction with the fatigue fractography after the testing of miniature specimens in air and simulated body fluid. It is demonstrated that accelerated environmentally assisted degradation under cyclic loading occurs due to a complicated interplay between corrosion damage, stress corrosion cracking and cyclic loads. The occurrence of corrosion fatigue in Mg alloys is exaggerated by the significant sensitivity to the testing frequency. The fatigue life or strength reduced remarkably with a decrease in the test frequency.


2022 ◽  
Author(s):  
Sanjeev Kumar Kanth ◽  
Anjli Sharma ◽  
Byong Chon Park ◽  
Woon Song ◽  
Hyun Rhu ◽  
...  

Abstract We have constructed a new nanomanipulator (NM) in a field emission scanning electron microscope (FE-SEM) to fabricate carbon nanotube (CNT) tip to precisely adjust the length and attachment angle of CNT onto the mother atomic force microscope (AFM) tip. The new NM is composed of 2 modules, each of which has the degree of freedom of three-dimensional rectilinear motion x, y and z and one-dimensional rotational motion θ. The NM is mounted on the stage of a FE-SEM. With the system of 14 axes in total which includes 5 axes of FE-SEM and 9 axes of nano-actuators, it was possible to see CNT tip from both rear and side view about the mother tip. With the help of new NM, the attachment angle error could be reduced down to 0º as seen from both the side and the rear view, as well as, the length of the CNT could be adjusted with the precision using electron beam induced etching. For the proper attachment of CNT on the mother tip surface, the side of the mother tip was milled with focused ion beam. In addition, electron beam induced deposition was used to strengthen the adhesion between CNT and the mother tip. In order to check the structural integrity of fabricated CNT, transmission electron microscope image was taken which showed the fine cutting of CNT and the clean surface as well. Finally, the performance of the fabricated CNT tip was demonstrated by imaging 1-D grating and DNA samples with atomic force microscope in tapping mode.


Bioanalysis ◽  
2022 ◽  
Author(s):  
Fatih Ahmet Erulaş ◽  
Dotse Selali Chormey ◽  
Ersoy Öz ◽  
Sezgin Bakırdere

Background: Epilepsy is a neurologic condition that is occurs globally and is associated with various degrees of seizures. Levetiracetam is an approved drug that is commonly used to treat seizures in juvenile epileptic patients. Accurate quantification of the drug’s active compound and determining its stability in the stomach after oral administration are important tasks that must be performed. Results & methodology: Levetiracetam was extracted from drug samples and quantified by gas chromatography mass spectrometry using calibration standards. Stability of levetiracetam was studied under various storage conditions and in simulated gastric conditions. The calibration plot determined for levetiracetam showed good linearity with a coefficient of determination value of 0.9991. The limits of detection and quantification were found to be 0.004 and 0.014 μg·ml-1, respectively. The structural integrity of levetiracetam did not change within a 4-h period under the simulated gastric conditions, and no significant degradation was observed for the different storage temperatures tested. Discussion & conclusion: An accurate and sensitive quantitative method was developed for the determination of levetiracetam in drug samples. The stability of the drug active compound was monitored under various storage and gastric conditions. The levetiracetam content determined in the drug samples were within ±10% of the value stated on the drug labels.


Author(s):  
Beatrice Ingrid Macente ◽  
Carlos Eduardo Fonseca-Alves ◽  
Georgia Modé Magalhães ◽  
Mariana Riboli Tavares ◽  
Cleber Fernando Menegasso Mansano ◽  
...  

Materials ◽  
2022 ◽  
Vol 15 (2) ◽  
pp. 506
Author(s):  
J. M. Prabhudass ◽  
K. Palanikumar ◽  
Elango Natarajan ◽  
Kalaimani Markandan

Recently, there has been an inclination towards natural fibre reinforced polymer composites owing to their merits such as environmental friendliness, light weight and excellent strength. In the present study, six laminates were fabricated consisting of natural fibres such as Kenaf fibre (Hibiscus cannabinus L.) and Bamboo fibre, together with multi-walled carbon nanotubes (MWCNTs) as reinforcing fillers in the epoxy matrix. Mechanical testing revealed that hybridization of natural fibres was capable of yielding composites with enhanced tensile properties. Additionally, impact testing showed a maximum improvement of ≈80.6% with the inclusion of MWCNTs as nanofiller in the composites with very high energy absorption characteristics, which were attributed to the high specific energy absorption of carbon nanotubes. The viscoelastic behaviour of hybridised composites reinforced with MWCNTs also showed promising results with a significant improvement in the glass transition temperature (Tg) and 41% improvement in storage modulus. It is worth noting that treatment of the fibres in NaOH solution prior to composite fabrication was effective in improving the interfacial bonding with the epoxy matrix, which, in turn, resulted in improved mechanical properties.


2022 ◽  
pp. 1-24
Author(s):  
Z.A. Rana ◽  
F. Mauret ◽  
J.M. Sanchez-Gil ◽  
K. Zeng ◽  
Z. Hou ◽  
...  

Abstract This article focuses on the aerodynamic design of a morphing aerofoil at cruise conditions using computational fluid dynamics (CFD). The morphing aerofoil has been analysed at a Mach number of 0.8 and Reynolds number of $3 \times 10^{6}$ , which represents the transonic cruise speed of a commercial aircraft. In this research, the NACA0012 aerofoil has been identified as the baseline aerofoil where the analysis has been performed under steady conditions at a range of angles of attack between $0^{^{\kern1pt\circ}}$ and $3.86^{^{\kern1pt\circ}}$ . The performance of the baseline case has been compared to the morphing aerofoil for different morphing deflections ( $w_{te}/c = [0.005 - 0.1]$ ) and start of the morphing locations ( $x_{s}/c = [0.65 - 0.80]$ ). Further, the location of the shock wave on the upper surface has also been investigated due to concerns about the structural integrity of the morphing part of the aerofoil. Based upon this investigation, a most favourable morphed geometry has been presented that offers both, a significant increase in the lift-to-drag ratio against its un-morphed counterpart and has a shock location upstream of the start of the morphing part.


Sign in / Sign up

Export Citation Format

Share Document