Decision letter for "Late Palaeozoic to Late Triassic northward accretion and incorporation of seamounts along the northern South Pamir: Insights from the anatomy of the Pshart accretionary complex"

2020 ◽  
Vol 55 (12) ◽  
pp. 7837-7857
Author(s):  
Dzhovid Yogibekov ◽  
Miao Sang ◽  
Wenjiao Xiao ◽  
Brian F. Windley ◽  
Yunus Mamadjonov ◽  
...  

2017 ◽  
Vol 8 (3) ◽  
pp. 599-600
Author(s):  
Wenjiao Xiao ◽  
Miao Sang ◽  
Apas Bakirov ◽  
Rustam Orozbaev

1991 ◽  
Vol 128 (1) ◽  
pp. 27-41 ◽  
Author(s):  
A. H. F. Robertson

AbstractIn northern Euboea, central eastern Greece, an up to 3 km-thick polygenetic melange (Pagondas complex) is structurally interleaved between a Triassic–Jurassic carbonate platform (Pelagonian Zone) and an overriding harzburgitic ophiolite. The melange mainly comprises late Triassic shallow-water limestone and calciturbidites, radiolarites, Triassic–Jurassic tholeiites, alkaline basalts and minor andesites. The units concerned range from kilometre-sized thrust sheets, and detached blocks, to broken formation and structureless, or bedded matrix-supported conglomerates (diamictite). The melange includes remnants of Neotethyan oceanic lithosphere, overlain by radiolarites, hemipelagic carbonates and distal calciturbidites derived from a Mesozoic carbonate platform. Tholeiites were erupted at a Triassic–Jurassic spreading axis, whilst within-plate-type alkali basalts are interpreted mainly as seamounts. Kilometre-scale detached blocks of shallow-water coralline limestone are identified as collapsed atolls, formed within an ocean and/or along the rifted continental margin. Volcaniclastic sediments are locally interbedded with radiolarite, and reflect post-volcanic erosion of the ocean floor. Intra-oceanic convergence began, apparently in late early Jurassic time, giving rise to the Euboea ophiolite above an inferred westwards-dipping subduction zone. The Pagondas Complex then developed as an accretionary prism. The subduction trench later collided with the Pelagonian passive margin, driving the hot Euobea ophiolite over the accretionary complex, to produce amphibolites and greenschists of the metamorphic sole. Trench–margin collision then drove the entire supra-subduction zone complex, apparently eastwards, downflexing the Pelagonian carbonate platform to form a foredeep in which late Jurassic (Kimmeridgian–Tithonian) radiolarian sediments accumulated. During emplacement, the accretionary complex was disrupted and partly resedimented as debris flows, turbiditic volcaniclastic sandstone and shale in a foredeep, or foreland basin setting.


Sign in / Sign up

Export Citation Format

Share Document