alkali basalts
Recently Published Documents


TOTAL DOCUMENTS

267
(FIVE YEARS 36)

H-INDEX

42
(FIVE YEARS 3)

Author(s):  
Alan L. Smith ◽  
M. John Roobol ◽  
Glen S. Mattioli ◽  
George E. Daly ◽  
Joan E. Fryxell

ABSTRACT The Providencia island group comprises an extinct Miocene stratovolcano located on a shallow submarine bank astride the Lower Nicaraguan Rise in the western Caribbean. We report here on the geology, geochemistry, petrology, and isotopic ages of the rocks within the Providencia island group, using newly collected as well as previously published results to unravel the complex history of Providencia. The volcano is made up of eight stratigraphic units, including three major units: (1) the Mafic unit, (2) the Breccia unit, (3) the Felsic unit, and five minor units: (4) the Trachyandesite unit, (5) the Conglomerate unit, (6) the Pumice unit, (7) the Intrusive unit, and (8) the Limestone unit. The Mafic unit is the oldest and forms the foundation of the island, consisting of both subaerial and subaqueous lava flows and pyroclastic deposits of alkali basalt and trachybasalt. Overlying the Mafic unit, there is a thin, minor unit of trachyandesite lava flows (Trachyandesite unit). The Breccia unit unconformably overlies the older rocks and consists of crudely stratified breccias block flows/block-and-ash flows) of vitrophyric dacite, which represent subaerial near-vent facies formed by gravitational and/or explosive dome collapse. The breccias commonly contain clasts of alkali basalt, indicating the nature of the underlying substrate. The Felsic unit comprises the central part of the island, composed of rhyolite lava flows and domes, separated from the rocks of the Breccia unit by a flat-lying unconformity. Following a quiescent period, limited felsic pyroclastic activity produced minor valley-fill ignimbrites (Pumice unit). The rocks of Providencia can be geochemically and stratigraphically subdivided into an older alkaline suite of alkali basalts, trachybasalts, and trachyandesites, and a younger subalkaline suite composed dominantly of dacites and rhyolites. Isotopically, the alkali basalts together with the proposed tholeiitic parent magmas for the dacites and rhyolites indicate an origin by varying degrees of partial melting of a metasomatized ocean-island basalt–type mantle that had been modified by interaction with the Galapagos plume. The dacites are the only phenocryst-rich rocks on the island and have a very small compositional range. We infer that they formed by the mixing of basalt and rhyolite magmas in a lower oceanic crustal “hot zone.” The rhyolites of the Felsic unit, as well as the rhyolitic magmas contributing to dacite formation, are interpreted as being the products of partial melting of the thickened lower oceanic crust beneath Providencia. U-Pb dating of zircons in the Providencia volcanic rocks has yielded Oligocene and Miocene ages, corresponding to the ages of the volcanism. In addition, some zircon crystals in the same rocks have yielded both Proterozoic and Paleozoic ages ranging between 1661 and 454 Ma. The lack of any evidence of continental crust beneath Providencia suggests that these old zircons are xenocrysts from the upper mantle beneath the Lower Nicaraguan Rise. A comparison of the volcanic rocks from Providencia with similar rocks that comprise the Western Caribbean alkaline province indicates that while the Providencia alkaline suite is similar to other alkaline suites previously defined within this province, the Providencia subalkaline suite is unique, having no equivalent rocks within the Western Caribbean alkaline province.


Author(s):  
Anna ASEEVA ◽  
Oleg AVCHENKO ◽  
Alexander KARABTSOV ◽  
Alexander CHASHCHIN ◽  
Sergey VYSOTSKIY ◽  
...  
Keyword(s):  

2021 ◽  
pp. SP510-2020-82
Author(s):  
Yong-Wei Zhao ◽  
Haibo Zou ◽  
Ni Li

AbstractThe Halaha River-Chaoer River (HC) volcanic field in the Greater Hinggan Mountain Range (NE China) consists of at least 41 monogenetic basaltic volcanoes. Strombolian, violent Strombolian, and phreatomagmatic eruptions, as well as the transitional eruptions, generated simple volcanic cone (single vent) and composite volcanic cone (multiple vents). Simple elongated cone is the most abundant geomorphology type. By analyzing the elongated crater and coalescent aligned circular crater, cone breaching and depression, and aligned vents, we identified a number of magma-feeding fissures. The majority of these fissures strike NE-ENE. Accordingly, we infer that the regional stress field affected volcanism in the HC field. The lavas in this field are alkali basalts that are enriched in light rare earth elements (La/YbN = 7.9 to 24.5). Their OIB-like REE and spider-diagram patterns, high Nb/U ratios, and high TiO2 contents (> 2 wt. %) indicate that the basalts were derived from the asthenosphere mantle. Both the asthenosphere upwelling and the tectonic forces are the key controlling factors of the volcanism in the HC field.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5355233


2021 ◽  
Author(s):  
Alfons Berger

<p>More than half a century of investigations on the chemical and isotopic compositions and on geochronological data of the Cenozoic magmatic rocks in the Alps and the transition to the Apennine will be summarized. The Alps itself are dominated by a calc-alkaline series between ~42 and 30 Ma, which we summarized as Periadriatic magmatism. This magmatism includes also eroded volcanic parts and several dykes in the Southern Alps and Tyrol. In addition, Sesia Zone magmatic rocks are characterized by ultrapotassic, shoshonitic and calc-alkaline rocks between 33 and 30 Ma. Two other magmatic provinces are located in between the Alps and the Apennine: (1) Veneto volcanic province (=VVP; nephelinites, basanites and alkali basalts between 52 and 30 Ma); (2) Mortara volcano (~28 Ma). Another group is the Esterél magmatic province, which is located in the Alps and their direct foreland, but are not related to Alpine geodynamics. These are basalts, andesites and dacites with mantle signature developed between 40 and 20 Ma. In the hanging plate of the early Apennine geometry, some minor volcanic activity is preserved in Sardinia. The major volume of Apennine magmatism itself (Elba etc.) is Late Miocene-Pleistocene in age and is related to roll back dynamics of the Apennine.</p><p>The Eocene/Oligocene Periadriatic magmatism of the Alps requires significant melt production in the crust combined with some ACF processes. This is possible by infiltration of fluids in the mantle wedge and the lower crust and a change of P-T conditions in the mantle. Their calc-alkaline character is related to Na-dominated input in the mantle and crust, which is commonly inferred to result from subduction of oceanic units. Ultrapotassic melts in the Sesia-unit most likely result from infiltration of K-dominated fluids, related to dehydration of continental material. The dynamics of Apennine and possible related forearc extension would allow an extensional related magmatism in the Esterél. This magmatism overlap in time with Alpine magmatism, and require a small-scale mantle dynamic due to the development of two slabs. In addition, the VVP and the Mortara volcano are located on the non deformed continental fragment of Adria between the Alps and Apennine. This area is characterized by overfilled basins and local magmatism inside the Adriatic continental plate.</p><p>The sometimes minor preserved volumes, but well constrain timing of magmatic rocks at the interaction between Alps and Apennine give insights in the lower crust/mantle dynamics at Oligocene/Early Miocene times. These interpretations may differ from models based on upper crustal tectonics, due to the decoupling between upper crust and lower crust/mantle. </p>


2021 ◽  
pp. SP510-2020-137
Author(s):  
Xiang Bai ◽  
Wei Wei ◽  
Hongmei Yu ◽  
Zhengquan Chen

AbstractThe Cenozoic alkali basalts are widely exposed in the Jingpohu volcanic field, Northeast China. Previous volcanology and geochronology researches have revealed that they were formed in three periods of Miocene (∼29.23-13.59 Ma), Pleistocene (∼83.7 Ka), and Holocene (∼5500-5200 a BP). The Miocene and Pleistocene basalts consist of alkali olivine basalts, while the Holocene basalts are composed of alkali olivine basalts and leucite tephrites. Petrogenetic studies reveal that the primary magmas of the Miocene and Pleistocene alkali olivine basalts originated from partial melting of EM2-like garnet peridotites, and those of the Holocene alkali olivine basalts were derived from melting of EM1- and EM2-like garnet peridotites with higher garnet proportions. In contrast, the primary magmas of Holocene leucite tephrites were derived from melting of eclogites and peridotites. Combined with previous researches, we suggest that melting of the mantle source region to generate Jingpohu alkali basalts was triggered by decarbonization and dehydration of the slabs stagnated in the mantle transition zone.Supplementary material at https://doi.org/10.6084/m9.figshare.c.5227666


2020 ◽  
Vol 8 (2) ◽  
pp. 259
Author(s):  
Nguihdama Dagwai ◽  
Kamgang Pierre ◽  
Mbowou Gbambié Isaac Bertrand ◽  
Chazot Gilles ◽  
Ngounouno Ismaïla

Spinel-lherzolite xenoliths trapped within the alkali basalts flow in the Liri region (Kapsiki Plateau) have a protogranular texture and consist of olivine, orthopyroxene, clinopyroxene and spinel crystals. These xenoliths are residues of partial melting of the primitive mantle, with the low titanium content in clinopyroxene crystals (TiO2 < 0.5 wt.%). The clinopyroxene of the spinel-lherzolite xenoliths from Liri, are divided into two distinct groups according to their trace element characteristics. The variations in the rare earths elements make it possible to classify the different clynopyroxenes in two groups: the first group consisting of the samples of Liri (Liri 1, Liri 02, Liri 3, Liri 05 and Liri 5) rich in light rare earths elements (LREEs), with ratios (Ce/Yb)N normalized which vary between 3.00 and 7.78. It is probably a cryptic metasomatism due to the absence of hydrated minerals (such as amphibole) which caused these enrichments. The second group comprises samples of Liri (Liri 01, Liri 2, Liri 04, Liri 4) depleted in light rare earths elements, with the ratio in (Ce/Yb) N < 1.2. This depletion in rare earths elements results from the extraction of the melting liquid.    


2020 ◽  
Vol 105 (11) ◽  
pp. 1662-1671
Author(s):  
Anastassia Y. Borisova ◽  
Ilya N. Bindeman ◽  
Michael J. Toplis ◽  
Nail R. Zagrtdenov ◽  
Jérémy Guignard ◽  
...  

Abstract Zircon (ZrSiO4) is the most frequently used geochronometer of terrestrial and extraterrestrial processes. To shed light on question of zircon survival in the Earth's shallow asthenosphere, high-temperature experiments of zircon dissolution in natural mid-ocean ridge basaltic (MORB) and synthetic haplobasaltic melts have been performed at temperatures of 1250–1300 °C and pressures from 0.1 MPa to 0.7 GPa. Zirconium measurements were made in situ by electron probe microanalyses (EPMA) at high current. Taking into account secondary fluorescence effects in zircon-glass pairs during EPMA, a zirconium diffusion coefficient of 2.87E-08 cm2/s was determined at 1300 °C and 0.5 GPa. When applied to the question of zircon survival in asthenospheric melts of tholeiitic basalt composition, the data are used to infer that typical 100 mm zircon crystals dissolve rapidly (~10 h) and congruently upon reaction with basaltic melt at pressures of 0.2–0.7 GPa. We observed incongruent (to crystal ZrO2 and SiO2 in melt) dissolution of zircon in natural mid-ocean ridge the basaltic melt at low pressures &lt;0.2 GPa and in the haplobasaltic melt at 0.7 GPa pressure. Our experimental data raise questions about the origin of zircon crystals in mafic and ultramafic rocks, in particular, in shallow oceanic asthenosphere and deep lithosphere, as well as the meaning of the zircon-based ages estimated from these minerals. The origin of zircon in shallow (ultra-) mafic chambers is likely related to the crystallization of intercumulus liquid. Large zircon megacrysts in kimberlites, peridotites, alkali basalts, and carbonatite magmas suggest fast transport and short interaction durations between zircon and melt. The origin of zircon megacrysts is likely related to metasomatic addition of Zr into the mantle as an episode of mantle melting should eliminate them on geologically short timescales.


Minerals ◽  
2020 ◽  
Vol 10 (9) ◽  
pp. 770
Author(s):  
Guishan Zhang ◽  
Ren Peng ◽  
Hongxin Qiu ◽  
Hanjie Wen ◽  
Yonggang Feng ◽  
...  

Cenozoic alkali basalts in Southeast (SE) China generally are genetically related to intracontinental rifting. Hence, they can be used to probe the nature of their underlying mantle sources and aid studies of the tectonic background in this region. This paper focuses on the Shanhoujian alkali basalts located in Bailing County, northeastern Fujian, SE China. We herein report their petrology, whole-rock major, and trace element geochemistry, and Sr-Nd isotopic composition and provide a new zircon U-Pb age for the basalts (~40 Ma, Eocene). These data help to constrain the petrogenesis of alkali basalts, their mantle source, and tectonic settings. The basalts are characterized by high Mg# (58.21–63.52) with Na2O/K2O > 1. MgO content is weakly correlated with CaO and Cr content but shows no correlation with Ni and Fe2O3 (total). Such features suggest that fractionation of clinopyroxene rather than olivine was important. In terms of trace elements, the alkali basalts display: (1) enrichment in La, Ce, Rb, Ba, Nb, and Ta and depletion in K, Pb, Zr, Hf, and Ti and (2) notable fractionation of light rare earth elements from heavy rare earth elements. Determined (87Sr/86Sr)i is in the range of 0.7041–0.7040 and εNd (t) is between +3.2 and +3.3. The Shanhoujian alkali basalts show a notable affinity to oceanic island basalts (OIBs) with little assimilation of crustal materials. They were derived from a pyroxenite and carbonated peridotite mantle source metasomatized by sediments carried by the subduction plate at different depths. The primary magmas of these basalts were derived from partial melting of this metasomatized mantle source during upwelling of the asthenospheric mantle as an intracontinental rift formed through extension in this part of SE China.


Minerals ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 597 ◽  
Author(s):  
Gaston Giuliani ◽  
Lee Groat ◽  
Anthony Fallick ◽  
Isabella Pignatelli ◽  
Vincent Pardieu

Corundum is not uncommon on Earth but the gem varieties of ruby and sapphire are relatively rare. Gem corundum deposits are classified as primary and secondary deposits. Primary deposits contain corundum either in the rocks where it crystallized or as xenocrysts and xenoliths carried by magmas to the Earth’s surface. Classification systems for corundum deposits are based on different mineralogical and geological features. An up-to-date classification scheme for ruby deposits is described in the present paper. Ruby forms in mafic or felsic geological environments, or in metamorphosed carbonate platforms but it is always associated with rocks depleted in silica and enriched in alumina. Two major geological environments are favorable for the presence of ruby: (1) amphibolite to medium pressure granulite facies metamorphic belts and (2) alkaline basaltic volcanism in continental rifting environments. Primary ruby deposits formed from the Archean (2.71 Ga) in Greenland to the Pliocene (5 Ma) in Nepal. Secondary ruby deposits have formed at various times from the erosion of metamorphic belts (since the Precambrian) and alkali basalts (from the Cenozoic to the Quaternary). Primary ruby deposits are subdivided into two types based on their geological environment of formation: (Type I) magmatic-related and (Type II) metamorphic-related. Type I is characterized by two sub-types, specifically Type IA where xenocrysts or xenoliths of gem ruby of metamorphic (sometimes magmatic) origin are hosted by alkali basalts (Madagascar and others), and Type IB corresponding to xenocrysts of ruby in kimberlite (Democratic Republic of Congo). Type II also has two sub-types; metamorphic deposits sensu stricto (Type IIA) that formed in amphibolite to granulite facies environments, and metamorphic-metasomatic deposits (Type IIB) formed via high fluid–rock interaction and metasomatism. Secondary ruby deposits, i.e., placers are termed sedimentary-related (Type III). These placers are hosted in sedimentary rocks (soil, rudite, arenite, and silt) that formed via erosion, gravity effect, mechanical transport, and sedimentation along slopes or basins related to neotectonic motions and deformation.


Sign in / Sign up

Export Citation Format

Share Document