late jurassic
Recently Published Documents


TOTAL DOCUMENTS

2029
(FIVE YEARS 493)

H-INDEX

66
(FIVE YEARS 9)

2022 ◽  
Vol 9 ◽  
Author(s):  
Xutong Guan ◽  
Chaodong Wu ◽  
Xuecai Zhang ◽  
Weiwei Jia ◽  
Wei Zhang

Sedimentary investigations, petrography, heavy mineral and conglomerate component analyses, and detrital zircon U-Pb geochronology were conducted to reconstruct the sedimentary and source-to-sink evolution of the Southern Junggar Basin, an intracontinental basin in the late Mesozoic. A paludal deltaic environment evolved into a fluvial environment, and abruptly prograded into alluvial fan and aeolian environments in the Late Jurassic, which was replaced by fan deltaic and lacustrine environments in the Early Cretaceous. Three source-to-sink systems were identified, according to different source-to-sink system features. In the northern piedmont of the Tianshan Orogenic Belt, the North Tianshan Orogenic Belt mainly provided sediments in the Late Jurassic. The North Tianshan and Central Tianshan Orogenic Belt both supplied sediments in the Early Cretaceous. In the northern piedmont of the Bogda Orogenic Belt, the Bogda Orogenic Belt was constantly the primary provenance, and the Tianshan Orogenic Belt also provided sediments. Sediment recycling occurred in the basin margin in the Late Jurassic and more metamorphic rocks were denudated in the Early Cretaceous. The source-to-sink system shrank in the Late Jurassic and expanded in the Early Cretaceous. This source-to-sink evolution and the conglomerates in the Kalazha Formation with seismite structures responded to the aridification in the Late Jurassic, the uplift of the Bogda and Tianshan Orogenic Belts in the Late Jurassic, and the exhumation of the Bogda and Tianshan Orogenic Belts in the Early Cretaceous.


Minerals ◽  
2021 ◽  
Vol 12 (1) ◽  
pp. 50
Author(s):  
Yury O. Redin ◽  
Anna A. Redina ◽  
Viktor P. Mokrushnikov ◽  
Alexandra V. Malyutina ◽  
Vladislav F. Dultsev

Many gold and gold-bearing complex deposits related to the Late Jurassic and Early Cretaceous magmatism are known in Eastern Transbaikalia. The largest deposits are the Lugokan, the Kultuma and the Bystrinsky. These deposits are in a paragenetic relationship with the Late Jurassic magmatic rocks of the Shakhtama complex. According to the available data, the total resources of gold in these three deposits are estimated to be approximately 443 tons: the Lugokan, Au~53 tons, Cu~302 thousand tons; the Kultuma, Au~121 tons, Cu~587 thousand tons, Fe~33 mln t; the Bystrinsky, Au~269 tons, Cu~2070 thousand tons, Fe~67 mln t. One of the main aims of this work was to reveal the criteria of fertility for the classical porphyry type, based on the specific geochemical features of rock-forming and accessory minerals. A comparison of the obtained results with other data on the large porphyry and skarn deposits of the world showed that the magmatic rocks of the Bystrinsky massif, specifically porphyry species dated 159.6–158.6 Ma, are potentially ore-bearing for the porphyry type mineralization. The magmatic rocks that widely occur at the Lugokan and Kultuma deposits are most close to the Fe-skarn deposits. The best indicators of the magma fertility for the porphyry rocks are Ce/Ce*, Eu/Eu*, Yb/Dy, (Ce/Nd)/Y in zircons. Thus, magmatic rocks characterized by Ce/Ce* > 100, Eu/Eu* > 0.4, Yb/Dy > 5.0 and (Ce/Nd)/Y > 0.01 may be classified as high fertile for the classical porphyry mineralization in Eastern Transbaikalia. The plagioclase and biotite chemistry data also showed that the magmatic rocks that occurred at the Bystrinsky deposit are the most fertile for the porphyry type mineralization. The magmatic rocks classified as ore-bearing porphyry type have Al* > 1 in plagioclase, high values of IV(F) and IV(F/Cl) and low ratios of X(F)/X(OH) in biotites. The assessment of the metal fertility of magmatic rocks is most effective in combination with data on both the composition of rock-forming and accessory minerals. The obtained data may be used to develop the methods of prediction and search for gold, copper and iron mineralization.


Geologija ◽  
2021 ◽  
Vol 64 (2) ◽  
pp. 143-158
Author(s):  
Darko SPAHIĆ ◽  
Tivadar GAUDENYI

The study provides a deeper understanding of the early Mesozoic paleogeogeographic spatial-temporal relationship by studying the two Adria-Europe intervening basement blocks. The Drina-Ivanjica and Pelagonian crustal fragments play important role in the internal early Alpine oceanic constitution further controlling the late Jurassic emplacement of Tethyan Dinaric-Hellenic ophiolites. The proposed paleogeographic reassessment is driven by the new paleocontinental inheritance data associated with the Variscan – pre-Variscan basement terranes. The recently published data suggest an Avalonian-type inheritance of the Pelagonian basement block which indicates a different pre-Variscan plate-tectonic journey, including separate spatial arrangement during Variscan amalgamation. In turn, Cadomian-type basement inheritance has been documented within the sliced Adria microplate. Thus, the Avalonian inheritance place the Pelagonian block away from the Apulia/Adria (Dinarides). In the investigated context of Paleozoic-Mesozoic paleogeographic transition, the Pelagonian block may represent a segment of the Cimmerian ribbon continent or southernmost segment of the Variscan Europe. With regards the nearby Adria microplate, a Triassic-Jurassic oceanic opening led to the decoupling (spreading away from the main Adria microplate) of the Drina-Ivanjica block. The rifting is in line with the simultaneous yet opposite or westward-directed drift of the Pelagonides. The breakup of south European Variscan configuration eventually result in the spatial alignment of the two basement fragments referred to as the “Drina–Pelagonide continental splinter”. By linking the paleogeographic pre-Jurassic–Jurassic relationship between these continental units, the two landlocked Neotethyan Vardar s.l. basins are extrapolated, “Dinaric Tethys” / Inner Dinaric-(Mirdita-Pindos) and the main Vardar Ocean (Western Vardar Zone).


2021 ◽  
Vol 30 (4) ◽  
pp. 741-753
Author(s):  
Olena A. Sirenko ◽  
Olena A. Shevchuk

The article presents an analysis of a large array of results of palynological studies of Mesozoic and Cenozoic sediments of Ukraine and adjacent regions of Belarus and Russia. Numerous literature data on the palynological characteristics of Meso-Cenozoic sediments and the materials of the authors are summarized according to the results of spore-pollen analysis of Mesozoic and Cenozoic sediments within the main tectonic structures of Ukraine. It has been established that the genus Pinus (Pinaceae) is an integral part of the Meso-Cenozoic flora of Ukraine. Although, the participation in the flora and vegetation of the genus Pinus and its species diversity in different periods of geological time were different. Despite the long history and significant achievements of palynological research of Meso-Cenozoic sediments of Ukraine, no attention has been paid to the historical aspect of Pinus development in the Meso-Cenozoic flora. This work is presented as the first stem to fill this gap. The genus Pinus has a large stratigraphic range, but its species diversity and quantitative changes in the composition of Mesozoic and Cenozoic flora of different ages are markedly different. The analysis of these changes made it possible to trace the emergence and main levels at which the species composition was renewed and the role of Pinus in flora increased during the Mesozoic and Cenozoic. According to the results of the research, 5 levels of increasing the participation of the genus Pinus and changes in its species affiliation in the Mesozoic flora were established: Aalenian period of the Middle Jurassic (appearance of the first representatives of Pinus); Oxfordian time of the Late Jurassic; Valanginian – Early Barremian times of the Early Cretaceous; Albian time of the Early Cretaceous; Late Campanian time of the Late Cretaceous. 5 levels of increasing the role of Pinus and its species diversity for the flora and vegetation of the Cenozoic were also established: Oligocene time of the Paleogene, Konkian-early Sarmatian time of the Middle Miocene; early Pontian (Ivankov) time of the Late Miocene; early Kimmerian time (early Sevastopol) of the Early Pliocene and Martonosha time of the Early Neopleistocene. Certain levels have been traced for the similar age of Cenozoic flora of Belarus and Russia.


2021 ◽  
pp. SP524-2021-82
Author(s):  
Paul J. Markwick ◽  
Douglas A. Paton ◽  
Estelle J. Mortimer

AbstractTransform margins are a function of the pre-existing crustal architecture (pre-transform) and the interplay of syn- and post-transform geodynamic processes. We use a suite of geospatial databases to investigate four transform margins: East Africa (Davie Deformational Zone, DDZ), Equatorial Africa, and the South African and Falkland (Malvinas) margins (Agulhas-Falkland Fracture Zone, AFFZ). The East African margin is the most complex of the four. This is a consequence of Late Jurassic - Early Cretaceous transform motion affecting highly heterogeneous crust, and post-transform deformation that varies along the margin. Equatorial Africa most closely adheres to traditional definitions of “transform margins”, but actually comprises two principal transform systems - the Romanche and St. Pauls, dictated by the pre-transform distribution of mobile belts and West African craton. All four margins are spatially associated with volcanism, and each exhibits narrow uplifts associated with transpression or transtension. But the causal relationship of these features with transform processes differ. Volcanism along the East African margin is pre- and post-transform. Syn-transform volcanism on the AFFZ is spatially limited, with the AFFZ possibly acting as a conduit for magmatism rather than as a causal driver. Transform margins are varied and complex and require an understanding of pre-, syn- and post-transform geodynamics.


Author(s):  
Błażej Błażejowski ◽  
Andrzej Wierzbowski

The geoeducation area (called also “Owadów-Brzezinki Geopark”) located in the north-western margin of the Holy Cross Mountains (Tomaszów Syncline) at Sławno community (Łódź Voivodeship), was established in June 2019, in close vicinity of the Owadów-Brzezinki quarry. This locality is one of the most important palaeontological sites described recently in Poland. The area consists of the exhibition pavilion, educational routs and panoramic viewing platform, which is located along the edge of the quarry. The palaeontological exhibition shows the unique Late Jurassic fossils of marine and terrestrial organisms, many of them new to science, that have been excavated in the quarry during the last eight years. Among the most important fossils are: ammonites, lobster-like decapod crustaceans, horseshoe crabs, actinopterygian fish, a cryptodiran turtle, ichthyosaurs, as well as a small terrestrial  crocodyliform, pterosaurs and insects. In addition to the original fossils, the exhibition presents life-size reconstructions of animals, that inhabited the local seas and islands during the Late Jurassic. The palaeontological sites of Owadów-Brzezinki is referred to as a new “taphonomic window” of the Late Jurassic, providing insights about the evolution of life on Earth in the palaeogeographical and palaeoenvironmental context.


Sign in / Sign up

Export Citation Format

Share Document