scholarly journals Dominant negative mutants of the duck hepatitis B virus core protein interfere with RNA pregenome packaging and viral DNA synthesis

Hepatology ◽  
1999 ◽  
Vol 30 (1) ◽  
pp. 308-315 ◽  
Author(s):  
Fritz von Weizsäcker ◽  
Josef Köck ◽  
Stefan Wieland ◽  
Wolf-Bernhard Offensperger ◽  
Hubert E. Blum
1998 ◽  
Vol 72 (11) ◽  
pp. 9116-9120 ◽  
Author(s):  
Josef Köck ◽  
Stefan Wieland ◽  
Hubert E. Blum ◽  
Fritz von Weizsäcker

ABSTRACT Hepadnaviruses are DNA viruses that replicate through reverse transcription of an RNA pregenome. Viral DNA synthesis takes place inside viral nucleocapsids, formed by core protein dimers. Previous studies have identified carboxy-terminal truncations of the core protein that affect viral DNA maturation. Here, we describe the effect of small amino-terminal insertions into the duck hepatitis B virus (DHBV) core protein on viral DNA replication. All insertion mutants formed replication-competent nucleocapsids. Elongation of viral DNA, however, appeared to be incomplete. Increasing the number of additional amino acids and introducing negatively charged residues further reduced the observed size of mature viral DNA species. Mutant core proteins did not inhibit the viral polymerase. Instead, viral DNA synthesis destabilized mutant nucleocapsids, rendering mature viral DNA selectively sensitive to nuclease action. Interestingly, the phenotype of two previously described carboxy-terminal DHBV core protein deletion mutants was found to be based on the same mechanism. These data suggest that (i) the amino- as well as the carboxy-terminal portion of the DHBV core protein plays a critical role in nucleocapsid stabilization, and (ii) the hepadnavirus polymerase can perform partial second-strand DNA synthesis in the absence of intact viral nucleocapsids.


Virology ◽  
2006 ◽  
Vol 353 (2) ◽  
pp. 443-450 ◽  
Author(s):  
Haitao Guo ◽  
Carol E. Aldrich ◽  
Jeffry Saputelli ◽  
Chunxiao Xu ◽  
William S. Mason

2003 ◽  
Vol 278 (30) ◽  
pp. 28123-28129 ◽  
Author(s):  
Josef Köck ◽  
Michael Kann ◽  
Gerhard Pütz ◽  
Hubert E. Blum ◽  
Fritz von Weizsäcker

2007 ◽  
Vol 81 (23) ◽  
pp. 13230-13234 ◽  
Author(s):  
Jolanta Vorreiter ◽  
Immanuel Leifer ◽  
Christine Rösler ◽  
Ludmila Jackevica ◽  
Paul Pumpens ◽  
...  

ABSTRACT The icosahedral capsid of duck hepatitis B virus (DHBV) is formed by a single core protein species (DHBc). DHBc is much larger than HBc from human HBV, and no high-resolution structure is available. In an accompanying study (M. Nassal, I. Leifer, I. Wingert, K. Dallmeier, S. Prinz, and J. Vorreiter, J. Virol. 81:13218-13229, 2007), we used extensive mutagenesis to derive a structural model for DHBc. For independent validation, we here mapped the epitopes of seven anti-DHBc monoclonal antibodies. Using numerous recombinant DHBc proteins and authentic nucleocapsids from different avihepadnaviruses as test antigens, plus a panel of complementary assays, particle-specific and exposed plus buried linear epitopes were revealed. These data fully support key features of the model.


Sign in / Sign up

Export Citation Format

Share Document