Upper Bounds on the Minimum Distance of Trellis Codes

1983 ◽  
Vol 62 (8) ◽  
pp. 2617-2646 ◽  
Author(s):  
A. R. Calderbank ◽  
J. E. Mazo ◽  
H. M. Shapiro
1985 ◽  
Vol 33 (4) ◽  
pp. 305-309 ◽  
Author(s):  
A. Calderbank ◽  
J. Mazo ◽  
V. Wei

2013 ◽  
Vol 21 (3) ◽  
pp. 241-256 ◽  
Author(s):  
Manuel González Sarabia ◽  
Joel Nava Lara ◽  
Carlos Rentería Marquez ◽  
Eliseo Sarmíento Rosales

AbstractIn this paper we will compute the main parameters of the parameterized codes arising from cycles. In the case of odd cycles the corresponding codes are the evaluation codes associated to the projective torus and the results are well known. In the case of even cycles we will compute the length and the dimension of the corresponding codes and also we will find lower and upper bounds for the minimum distance of this kind of codes. In many cases our upper bound is sharper than the Singleton bound.


Entropy ◽  
2020 ◽  
Vol 22 (1) ◽  
pp. 78
Author(s):  
Lucian Trifina ◽  
Daniela Tarniceriu ◽  
Jonghoon Ryu ◽  
Ana-Mirela Rotopanescu

In this paper, we obtain upper bounds on the minimum distance for turbo codes using fourth degree permutation polynomial (4-PP) interleavers of a specific interleaver length and classical turbo codes of nominal 1/3 coding rate, with two recursive systematic convolutional component codes with generator matrix G = [ 1 , 15 / 13 ] . The interleaver lengths are of the form 16 Ψ or 48 Ψ , where Ψ is a product of different prime numbers greater than three. Some coefficient restrictions are applied when for a prime p i ∣ Ψ , condition 3 ∤ ( p i − 1 ) is fulfilled. Two upper bounds are obtained for different classes of 4-PP coefficients. For a 4-PP f 4 x 4 + f 3 x 3 + f 2 x 2 + f 1 x ( mod 16 k L Ψ ) , k L ∈ { 1 , 3 } , the upper bound of 28 is obtained when the coefficient f 3 of the equivalent 4-permutation polynomials (PPs) fulfills f 3 ∈ { 0 , 4 Ψ } or when f 3 ∈ { 2 Ψ , 6 Ψ } and f 2 ∈ { ( 4 k L − 1 ) · Ψ , ( 8 k L − 1 ) · Ψ } , k L ∈ { 1 , 3 } , for any values of the other coefficients. The upper bound of 36 is obtained when the coefficient f 3 of the equivalent 4-PPs fulfills f 3 ∈ { 2 Ψ , 6 Ψ } and f 2 ∈ { ( 2 k L − 1 ) · Ψ , ( 6 k L − 1 ) · Ψ } , k L ∈ { 1 , 3 } , for any values of the other coefficients. Thus, the task of finding out good 4-PP interleavers of the previous mentioned lengths is highly facilitated by this result because of the small range required for coefficients f 4 , f 3 and f 2 . It was also proven, by means of nonlinearity degree, that for the considered inteleaver lengths, cubic PPs and quadratic PPs with optimum minimum distances lead to better error rate performances compared to 4-PPs with optimum minimum distances.


1992 ◽  
Vol 38 (6) ◽  
pp. 1791-1795
Author(s):  
A.R. Calderbank ◽  
G.J. Pottie
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document