Retracted : In vivo and in vitro effects of PTH1‐34 on osteogenic and adipogenic differentiation of human bone marrow‐derived mesenchymal stem cells through regulating microRNA‐155

2018 ◽  
Vol 119 (4) ◽  
pp. 3220-3235 ◽  
2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Mahmoud M. Gabr ◽  
Mahmoud M. Zakaria ◽  
Ayman F. Refaie ◽  
Sherry M. Khater ◽  
Sylvia A. Ashamallah ◽  
...  

The aim of this study was to provide evidence for further in vivo maturation of insulin-producing cells (IPCs) derived from human bone marrow-derived mesenchymal stem cells (HBM-MSCs). HBM-MSCs were obtained from three insulin-dependent type 2 diabetic volunteers. Following expansion, cells were differentiated according to a trichostatin-A/GLP protocol. One million cells were transplanted under the renal capsule of 29 diabetic nude mice. Blood glucose, serum human insulin and c-peptide levels, and glucose tolerance curves were determined. Mice were euthanized 1, 2, 4, or 12 weeks after transplantation. IPC-bearing kidneys were immunolabeled, number of IPCs was counted, and expression of relevant genes was determined. At the end of in vitro differentiation, all pancreatic endocrine genes were expressed, albeit at very low values. The percentage of IPCs among transplanted cells was small (≤3%). Diabetic animals became euglycemic8±3days after transplantation. Thereafter, the percentage of IPCs reached a mean of ~18% at 4 weeks. Relative gene expression of insulin, glucagon, and somatostatin showed a parallel increase. The ability of the transplanted cells to induce euglycemia was due to their further maturation in the favorable in vivo microenvironment. Elucidation of the exact mechanism(s) involved requires further investigation.


2005 ◽  
Vol 14 (10) ◽  
pp. 787-798 ◽  
Author(s):  
Shaoheng Zhang ◽  
Zhuqing Jia ◽  
Junbo Ge ◽  
Lizhong Gong ◽  
Yanling Ma ◽  
...  

Recent findings suggest the feasibility of cardiac repair by transplantation of bone marrow mesenchymal stem cell (MSCs). However, it remains controversial regarding which cell type is the best source for transplanting into the ischemic heart because of lack of well-defined cell markers. In this study, we investigated the in vitro and in vivo effects of the novel multipotent marrow mesenchymal stem cells (MMSCs) from human bone marrow. Pluripotent markers (Oct4, Bmi1, and Abcg2) and vascular endothelial growth factor (VEGF) were detected by RT-PCR and immunofluorescence in MMSCs. Myocardial differentiation was induced in the expanded MMSC cultures by treatment with 5-azacyline. Expressions of VEGF in the animals transplanted with MMSCs were markedly increased in comparison with the animals injected with fibroblasts or saline at both mRNA and protein levels. VEGF expression was observed in both transplanted MMSCs and recipient cardiomyocytes by immunofluorescence. Confocal immunofluorescence microscopy revealed the specific markers for cardiomyocytes and endothelial cells in transplanted MMSCs 14 days after transplantation. Vessel count was increased and left ventricular function improved post-MMSC transplantation. These results indicate that transplantation of purified MMSCs from human bone marrow upregulated VEGF expression, enhanced angiogenesis, and improved the functional recovery following myocardial infarction in rats.


Biomaterials ◽  
2007 ◽  
Vol 28 (35) ◽  
pp. 5280-5290 ◽  
Author(s):  
Joshua R. Mauney ◽  
Trang Nguyen ◽  
Kelly Gillen ◽  
Carl Kirker-Head ◽  
Jeffrey M. Gimble ◽  
...  

2012 ◽  
Vol 7 (6) ◽  
pp. 757-767 ◽  
Author(s):  
Sarah L Boddy ◽  
Wei Chen ◽  
Ricardo Romero-Guevara ◽  
Lucksy Kottam ◽  
Illaria Bellantuono ◽  
...  

2012 ◽  
Vol 315 (1) ◽  
pp. 28-37 ◽  
Author(s):  
Wei Zhu ◽  
Ling Huang ◽  
Yahong Li ◽  
Xu Zhang ◽  
Jianmei Gu ◽  
...  

2017 ◽  
Vol 118 (10) ◽  
pp. 3072-3079 ◽  
Author(s):  
Annelise Pezzi ◽  
Bruna Amorin ◽  
Álvaro Laureano ◽  
Vanessa Valim ◽  
Alice Dahmer ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document