in vitro expansion
Recently Published Documents


TOTAL DOCUMENTS

382
(FIVE YEARS 76)

H-INDEX

44
(FIVE YEARS 4)

Author(s):  
Xin Zhao ◽  
Weican Wan ◽  
Bin Li ◽  
Xianyu Zhang ◽  
Mao Zhang ◽  
...  

2021 ◽  
pp. 102523
Author(s):  
Bin Li ◽  
Yuhan Wang ◽  
Carl Pelz ◽  
Josh Moss ◽  
Ruth Shemer ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 2077
Author(s):  
Mariana Tavares Barroso ◽  
Bruna Costa ◽  
Cátia Rebelo de Almeida ◽  
Mireia Castillo Martin ◽  
Nuno Couto ◽  
...  

Background: Cancers of the pancreas and biliary tree remain one of the most aggressive oncological malignancies, with most patients relying on systemic chemotherapy. However, effective biomarkers to predict the best therapy option for each patient are still lacking. In this context, an assay able to evaluate individual responses prior to treatment would be of great value for clinical decisions. Here we aimed to develop such a model using zebrafish xenografts to directly challenge pancreatic cancer cells to the available chemotherapies. Methods: Zebrafish xenografts were generated from a Panc-1 cell line to optimize the pancreatic setting. Pancreatic surgical resected samples, without in vitro expansion, were used to establish zebrafish patient-derived xenografts (zAvatars). Upon chemotherapy exposure, zAvatars were analyzed by single-cell confocal microscopy. Results: We show that Panc-1 zebrafish xenografts are able to reveal tumor responses to both FOLFIRINOX and gemcitabine plus nanoparticle albumin-bound (nab)-paclitaxel in just 4 days. Moreover, we established pancreatic and ampullary zAvatars with patient-derived tumors representative of different histological types. Conclusion: Altogether, we provide a short report showing the feasibility of generating and analyzing with single-cell resolution zAvatars from pancreatic and ampullary cancers, with potential use for future preclinical studies and personalized treatment.


Author(s):  
Ratan K Choudhary ◽  
Fenq-Qi Zhao

: Adult stem cells like mammary and mesenchymal stem cells have received significant attention because these stem cells (SCs) possess therapeutic potential in treating many animal diseases. These cells can be administered in an autologous or allogenic fashion, either freshly isolated from the donor tissue or previously cultured and expanded in vitro. Expansion of adult stem cells is a prerequisite before therapeutic application because sufficient numbers are required in dosage calculation. Stem cells directly and indirectly (by secreting various growth factors and angiogenic factors called secretome) act to repair and regenerate injured tissues. Recent studies on mammary stem cells showed in vivo and in vitro expansion ability by removing the blockage of asymmetrical cell division. Compounds like purine analogs (xanthosine, xanthine, and inosine) or hormones (progesterone and bST) help increase stem cell population by promoting cell division. Such methodology of enhancing stem cells number, either in vivo or in vitro, may help in preclinical studies for translational research like treating diseases like mastitis. The application of mesenchymal stem cells has also been shown to benefit mammary gland health due to the ‘homing’ property of stem cells. In addition to that, the multiple positive effects of stem cell secretome are on mammary tissue healing and killing bacteria is novel in the production of quality milk. This systematic review discusses some of the studies on stem cells that have been useful in increasing the stem cell population and increasing mammary stem/progenitor cells. Finally, we provide insights into how enhancing mammary stem cell population could potentially increase terminally differentiated cells, ultimately leading to more milk production.


2021 ◽  
Vol 5 (2) ◽  
pp. 105-109
Author(s):  
Dieter Kabelitz
Keyword(s):  

1 bis 5 % der T-Zellen im Blut des Menschen exprimieren einen γδ-T-Zellrezeptor anstelle des αβ-T-Zellrezeptors von „konventionellen“ CD4- bzw. CD8-T-Zellen. Im Unterschied zu αβ-T-Zellen erkennen γδ-T-Zellen ihre Liganden unabhängig von HLA-Molekülen. Die im Blut vorherrschende γδ-T-Zell-Population (Vγ9Vδ2-T-Zellen) wird von Pyrophosphaten aktiviert, die von vielen Mikroben sezerniert, aber auch von transformierten (Tumor-)Zellen produziert werden können. Hierdurch werden Tumorzellen im Unterschied zu gesunden Zellen für den Angriff durch γδ-T-Zellen sensibilisiert. Die starke zytotoxische Aktivität verbunden mit der HLA-unabhängigen Erkennung vieler unterschiedlicher Tumoren und der einfachen in vitro Expansion machen γδ-T-Zellen zu attraktiven Effektorzellen für die zelluläre Immuntherapie.


Antibodies ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 26
Author(s):  
Rut Valgardsdottir ◽  
Irene Cattaneo ◽  
Gavino Napolitano ◽  
Annibale Raglio ◽  
Orietta Spinelli ◽  
...  

We report the isolation of two human IgG1k monoclonal antibodies (mAbs) directed against the SARS-CoV-2 spike protein. These mAbs were isolated from two donors who had recovered from COVID-19 infection during the first pandemic peak in the Lombardy region of Italy, the first European and initially most affected region in March 2020. We used the method of EBV immortalization of purified memory B cells and supernatant screening with a spike S1/2 assay for mAb isolation. This method allowed rapid isolation of clones, with one donor showing about 7% of clones positive against spike protein, whereas the other donor did not produce positive clones out of 91 tested. RNA was extracted from positive clones 39–47 days post-EBV infection, allowing VH and VL sequencing. The same clones were sequenced again after a further 100 days in culture, showing that no mutation had taken place during in vitro expansion. The B cell clones could be expanded in culture for more than 4 months after EBV immortalization and secreted the antibodies stably during that time, allowing to purify mg quantities of each mAb for functional assays without generating recombinant proteins. Unfortunately, neither mAb had significant neutralizing activity in a virus infection assay with several different SARS-CoV-2 isolates. The antibody sequences are made freely available.


2021 ◽  
Vol 36 (Supplement_1) ◽  
Author(s):  
M Martin ◽  
M Ferreira ◽  
J Taelman ◽  
C Eguizabal ◽  
S M Chuv. d. Sous. Lopes

Abstract Study question Do different ECMs/substrates and growth media culture conditions improve in vitro male human primordial germ cell (hPGC) expansion? Summary answer We achieved in vitro expansion improvement of male hPGCs with specific growth factors such as LIF, EGF, FGF2 and GDNF on gelatin- and vitronectin-coating cultures. What is known already PGCs are the precursors of male and female gametes, which are specified during early mammalian post-implantation embryonic development. PGCs undergo sequential cell divisions to differentiate into pro-spermatogonia (pSPG). In vitro propagation of pSPG could be important to understand the transition to spermatogonial stem cells (SSCs), important for fertility preservation in patients with infertility. Here, we aimed at performing a comparative analysis on in vitro feeder-free culture systems, based on different extracellular matrix (ECM) and growth media culture conditions, to support the expansion of the male germline stem cell populations using second trimester human male gonads as primary material. Study design, size, duration We collected human 2nd trimester male fetal gonads from elective abortions. Male gonads were dissected in saline solution (0.9% NaCl) and were either fixed overnight in 4% paraformaldehyde (PFA) for immunohistochemistry or disaggregated by enzymatic digestion for in vitro culture. Participants/materials, setting, methods After differential plating, fetal cells were cultured for 6 days. Disaggregated gonads were cultured with two different growing media (Medium 1 supplemented with LIF, EGF, FGF–2 and GDNF and Medium 2 supplemented with RA, BMP 4 and Activin A) on gelatin, laminin, vitronectin or matrigel coated plates. Cultured cells were immunostained, quantified for the expression of DDX4 and POU5F1 after 3 days (D3) and 6 days (D6) of culture. Main results and the role of chance We pursued to evaluate whether germ cells dissociated from a pool of male fetal gonads could propagate in vitro when cultured for D6 in different conditions. We observed that expansion of POU5F1-positive early PGCs and DDX4-positive late PGCs was only observed when cells were plated on gelatin or vitronectin and cultured with Medium 1, containing the growth factors LIF, EGF, FGF2 and GDNF. However, a reduced percentage of PGCs was observed in all four different coatings when grown with Medium 2, containing RA, BMP4 and Activin A. We analyzed the relative expression of the PGC markers POU5F1, DDX4 and MAGEA4 in histological sections of gonads from embryos at 18.5 weeks of gestation. Two populations of hPGCs were observed: ∼10–30% of the gonadal cells expressed solely DDX4 (late PGCs), whereas less than 10% of gonadal cells expressed POU5F1 (early PGCs). SOX9 and STARD1 expression was evaluated, confirming the presence of Sertoli cells and Leydig cells, respectively. Limitations, reasons for caution Due to the limited and difficulty to obtain human fetal tissue, a limited number of samples were used. Wider implications of the findings: We expanded human male fetal germ cells in vitro for D6 on gelatin and vitronectin coated plates with Medium 1, containing growth factors LIF, EGF, FGF2 and GDNF. Our findings provide a 2D culture system to expand hPGCs that could be useful to study propagation to pSPGs and eventually SSCs. Trial registration number Not applicable


Sign in / Sign up

Export Citation Format

Share Document