adipogenic differentiation
Recently Published Documents


TOTAL DOCUMENTS

1175
(FIVE YEARS 499)

H-INDEX

58
(FIVE YEARS 9)

Development ◽  
2022 ◽  
Author(s):  
Naoki Takada ◽  
Masaki Takasugi ◽  
Yoshiki Nonaka ◽  
Tomonori Kamiya ◽  
Kazuaki Takemura ◽  
...  

Worldwide prevalence of obesity is associated with the increase of lifestyle-related diseases. The accumulation of intermuscular adipose tissue (IMAT) is considered a major problem whereby obesity leads to sarcopenia and metabolic disorders and thus is a promising target for treating these pathological conditions. However, whereas obesity-associated IMAT is suggested to originate from PDGFRα+ mesenchymal progenitors, processes underlying their adipogenesis remain largely unexplored. Here, we comprehensively investigated intra- and extracellular changes associated with these processes using single-cell RNA sequencing (scRNA-Seq) and mass spectrometry. Our scRNA-Seq analysis identified a small PDGFRα+ cell population in obese mice directed strongly toward adipogenesis. Proteomic analysis showed that the appearance of this cell population is accompanied by an increase in galectin-3 in interstitial environments, which was found to activate adipogenic PPARγ signals in PDGFRα+ cells. Moreover, IMAT formation during muscle regeneration was significantly suppressed in galectin-3 KO mice. Our findings, together with these multi-omics datasets, could unravel microenvironmental networks during muscle regeneration highlighting possible therapeutic targets against IMAT formation in obesity.


2022 ◽  
Vol 13 (1) ◽  
Author(s):  
Francesco Da Ros ◽  
Luca Persano ◽  
Dario Bizzotto ◽  
Mariagrazia Michieli ◽  
Paola Braghetta ◽  
...  

Abstract Background Dissection of mechanisms involved in the regulation of bone marrow microenvironment through cell–cell and cell–matrix contacts is essential for the detailed understanding of processes underlying bone marrow activities both under physiological conditions and in hematologic malignancies. Here we describe Emilin-2 as an abundant extracellular matrix component of bone marrow stroma. Methods Immunodetection of Emilin-2 was performed in bone marrow sections of mice from 30 days to 6 months of age. Emilin-2 expression was monitored in vitro in primary and mesenchymal stem cell lines under undifferentiated and adipogenic conditions. Hematopoietic stem cells and progenitors in bone marrow of 3- to 10-month-old wild-type and Emilin-2 null mice were analyzed by flow cytometry. Results Emilin-2 is deposited in bone marrow extracellular matrix in an age-dependent manner, forming a meshwork that extends from compact bone boundaries to the central trabecular regions. Emilin-2 is expressed and secreted by both primary and immortalized bone marrow mesenchymal stem cells, exerting an inhibitory action in adipogenic differentiation. In vivo Emilin-2 deficiency impairs the frequency of hematopoietic stem/progenitor cells in bone marrow during aging. Conclusion Our data provide new insights in the contribution of bone marrow extracellular matrix microenvironment in the regulation of stem cell niches and hematopoietic progenitor differentiation.


2022 ◽  
Vol 2022 ◽  
pp. 1-14
Author(s):  
Bruna Cristina Falavinha ◽  
María Julia Barisón ◽  
Carmen Lúcia Kuniyoshi Rebelatto ◽  
Bruna Hilzendeger Marcon ◽  
Alessandra de Melo Aguiar ◽  
...  

Dysfunctions in adipose tissue cells are responsible for several obesity-related metabolic diseases. Understanding the process of adipocyte formation is thus fundamental for understanding these diseases. The adipocyte differentiation of adipose-derived stem/stromal cells (ADSCs) showed a reduction in the mRNA level of the interleukin 21 receptor (IL21R) during this process. Although the receptor has been associated with metabolic diseases, few studies have examined its function in stem cells. In this study, we used confocal immunofluorescence assays to determine that IL21R colocalizes with mitochondrial protein ATP5B, ALDH4A1, and the nucleus of human ADSCs. We demonstrated that silencing and overexpression of IL21R did not affect the cell proliferation and mitochondrial activity of ADSCs. However, IL21R silencing did reduce ADSC adipogenic capacity. Further studies are needed to understand the mechanism involved between IL21R and the adipogenic differentiation process.


2022 ◽  
Vol 2022 ◽  
pp. 1-11
Author(s):  
Shimao Yang ◽  
Fei Gao ◽  
Min Li ◽  
Zhennan Gao

In literature, antiosteoporotic effects of Angelica sinensis root have been confirmed, but the impact of Angelica sinensis polysaccharide (ASP) on osteoblastic or adipogenic distinction of BMSCs is limited. This paper aimed to explore the role of ASP on proliferation and differentiation of rat BMSCs. Rat BMSCs were subjected to isolation and identification through flow cytometry. The proliferation of rat BMSCs under ASP was performed by CCK-8 kit. Measures of osteogenesis under different concentrations of ASP were detected by using alizarin red staining for mesenchymal cells differentiation and ALP activity assay to identify ALP activity. Quantitative RT-PCR was selected to identify osteoblastic or adipogenic biomarkers from a genetic perspective. Likewise, we have evaluated measures of indicators of Wnt/β-catenin signal. ASP significantly promoted the proliferation, increased osteogenesis, and decreased adipogenesis of rat BMSCs within the limit of 20–60 mg/L in a dose-dependent manner but was suppressed at 80 mg/L. The expression of cyclin D1 and ß-catenin showed a considerable rise over the course of ASP induced osteogenesis. Dickkopf 1 (DKK1) suppressed the regulation of rat BMSCs differentiation through the mediation of ASP. We have observed that ASP upregulated the osteogenic but downregulated adipogenic differentiation of BMSCs, and our findings help to contribute to effective solutions for treating bone disorders.


Animals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 119
Author(s):  
Hongyan Ren ◽  
Haoyuan Zhang ◽  
Zaidong Hua ◽  
Zhe Zhu ◽  
Jiashu Tao ◽  
...  

The intramuscular fat is a major quality trait of meat, affecting sensory attributes such as flavor and texture. Several previous GWAS studies identified Acyl-CoA Synthetase Long Chain Family Member 4 (ACSL4) gene as the candidate gene to regulate intramuscular fat content in different pig populations, but the underlying molecular function of ACSL4 in adipogenesis within pig skeletal muscle is not fully investigated. In this study, we isolated porcine endogenous intramuscular adipocyte progenitors and performed ACSL4 loss- and gain-of-function experiments during adipogenic differentiation. Our data showed that ACSL4 is a positive regulator of adipogenesis in intramuscular fat cells isolated from pigs. More interestingly, the enhanced expression of ACSL4 in pig intramuscular adipocytes could increase the cellular content of monounsaturated and polyunsaturated fatty acids, such as gamma-L eicosapentaenoic acid (EPA), docosahexaenoic acid (DHA). The above results not only confirmed the function of ACSL4 in pig intramuscular adipogenesis and meat quality attributes, but also provided new clues for the improvement of the nutritional value of pork for human health.


2021 ◽  
Vol 23 (1) ◽  
pp. 322
Author(s):  
Maria N. Evseeva ◽  
Maria S. Balashova ◽  
Konstantin Y. Kulebyakin ◽  
Yury P. Rubtsov

Obesity and type 2 diabetes are both significant contributors to the contemporary pandemic of non-communicable diseases. Both disorders are interconnected and associated with the disruption of normal homeostasis in adipose tissue. Consequently, exploring adipose tissue differentiation and homeostasis is important for the treatment and prevention of metabolic disorders. The aim of this work is to review the consecutive steps in the postnatal development of adipocytes, with a special emphasis on in vivo studies. We gave particular attention to well-known transcription factors that had been thoroughly described in vitro, and showed that the in vivo research of adipogenic differentiation can lead to surprising findings.


2021 ◽  
Author(s):  
Yangge Du ◽  
Yunsong Liu ◽  
Yongsheng Zhou ◽  
Ping Zhang

Abstract Background: Bone is a rigid organ that provides support and physical protection to vital organs of the body. Several bone loss disorders are commonly associated with increased bone marrow adipose tissue. Bone marrow mesenchymal stromal/stem cells (BMSCs) are multipotent progenitors differentiating into osteoblasts, adipocytes, and chondrocytes. CDC20 is a co-activator of APC/C, required for full ubiquitin ligase activity. In our previous study, CDC20 promoted the osteogenic commitment of BMSCs and Cdc20 conditional knockout mice suggested a decline in bone mass. In this study, we investigated the function of CDC20 in the adipogenic differentiation of BMSCs and provided a new clue between adipogenesis and osteogenesis. Methods: Lentivirus containing CDC20 shRNA was used for CDC20 knockdown in hBMSCs. Primary mBMSCs were isolated from Cdc20f/f and Sp7-Cre;Cdc20f/f mice. Adipogenesis was examined by qRT-PCR and western blot analysis of adipogenic regulators, Oil Red O staining and transplantation into nude mice. The CDC20 knockout efficiency was determined through immunochemistry, qRT-PCR and western blot of bone marrow. Accumulation of adiposity was measured through histology and staining of bone sections. Results: CDC20 expression in hBMSCs was significantly decreased during adipogenic differentiation. Knockdown of CDC20 enhanced adipogenic differentiation of hBMSCs in vitro. CDC20-knockdown hBMSCs showed more adipose tissue–like constructs in H&E staining and Oil Red O staining. Sp7-Cre;Cdc20f/f mice presented increased adipocytes in bone marrow compared with control mice. mBMSCs from Sp7-Cre;Cdc20f/f mice exerted upregulated adipogenic differentiation. Conclusions: Our findings showed that knockdown of CDC20 enhanced adipogenesis of h(m)BMSCs in vitro and in vivo. Overall, CDC20 regulated both adipogenesis and osteogenesis of BMSCs, and may lead to the development of new therapeutic target for “fatty bone” and osteoporosis.


Sign in / Sign up

Export Citation Format

Share Document