Time-resolved photoacoustic calorimetry as a tool to determine rate constants of hydrogen-abstraction reactions

2006 ◽  
Vol 38 (6) ◽  
pp. 357-363 ◽  
Author(s):  
Paulo M. Nunes ◽  
Catarina F. Correia ◽  
Rui M. Borges Dos Santos ◽  
José A. Martinho Simões

The work described in this and the following paper is a continuation of that in parts I and II, devoted to elucidation of the mechanism of the reactions of methylene with chloroalkanes, with particular reference to the reactivities of singlet and triplet methylene in abstraction and insertion processes. The products of the reaction between methylene, prepared by the photolysis of ketene, and 1-chloropropane have been identified and estimated and their dependence on reactant pressures, photolysing wavelength and presence of foreign gases (oxygen and carbon mon­oxide) has been investigated. Both insertion and abstraction mechanisms contribute significantly to the over-all reaction, insertion being relatively much more important than with chloroethane. This type of process appears to be confined to singlet methylene. If, as seems likely, there is no insertion into C—Cl bonds under our conditions (see part IV), insertion into C2—H and C3—H bonds occurs in statistical ratio, approximately. On the other hand, the chlorine substituent reduces the probability of insertion into C—H bonds in its vicinity. As in the chloroethane system, both species of methylene show a high degree of selectivity in their abstraction reactions. We find that k S Cl / k S H >7.7, k T Cl / k T H < 0.14, where the k ’s are rate constants for abstraction, and the super- and subscripts indicate the species of methylene and the type of atom abstracted, respectively. Triplet methylene is discriminating in hydrogen abstraction from 1-C 3 H 7 Cl, the overall rates for atoms attached to C1, C2, C3 being in the ratios 2.63:1:0.


2011 ◽  
Vol 10 (05) ◽  
pp. 691-709 ◽  
Author(s):  
CONG HOU ◽  
CHENG-GANG CI ◽  
TONG-YIN JIN ◽  
YONG-XIA WANG ◽  
JING-YAO LIUM

The hydrogen abstraction reaction of CH 3 CH 2 C(O)OCH 2 CH 3 + OH has been studied theoretically by dual-level direct dynamics method. Six H-abstraction channels were found for this reaction. The required potential energy surface information for the kinetic calculations was obtained at the MCG3-MPWB//M06-2X/aug-cc-pVDZ level. The rate constants were calculated by the improved canonical variational transition-state theory with small-curvature tunneling correction (ICVT/SCT) approach in the temperature range of 200–2000 K. It is shown that the "methylene H-abstraction" from the alkoxy end of the ester CH 3 CH 2 C(O)OCH 2 CH 3 is the dominant channel at lower temperature (< 400 K), while the other channels from the acetyl end should be taken into account as the temperature increases and become the competitive ones at higher temperature. The calculated global rate constants are in good agreement with the experimental ones in the measured temperature range and exhibit a negative temperature dependence below 500 K. A four-parameter rate constant expression was fitted from the calculated kinetic data between 200–2000 K.


2017 ◽  
Author(s):  
Colin D. Kinz-Thompson ◽  
Ruben L. Gonzalez

AbstractMany time-resolved, single-molecule biophysics experiments seek to characterize the kinetics of biomolecular systems exhibiting dynamics that challenge the time resolution of the given technique. Here we present a general, computational approach to this problem that employs Bayesian inference to learn the underlying dynamics of such systems, even when they are much faster than the time resolution of the experimental technique being used. By accurately and precisely inferring rate constants, our Bayesian Inference for the Analysis of Sub-temporal-resolution Data (BIASD) approach effectively enables the experimenter to super-resolve the poorly resolved dynamics that are present in their data.


Sign in / Sign up

Export Citation Format

Share Document