On the theory of the amplification of backwards matter waves in a Bose-Einstein condensate of dilute gas

2005 ◽  
Vol 2 (10) ◽  
pp. 512-515 ◽  
Author(s):  
Yu A Avetisyan ◽  
E D Trifonov
2012 ◽  
Vol 67 (10-11) ◽  
pp. 525-533
Author(s):  
Zhi-Qiang Lin ◽  
Bo Tian ◽  
Ming Wang ◽  
Xing Lu

Under investigation in this paper is a variable-coefficient coupled Gross-Pitaevskii (GP) system, which is associated with the studies on atomic matter waves. Through the Painlev´e analysis, we obtain the constraint on the variable coefficients, under which the system is integrable. The bilinear form and multi-soliton solutions are derived with the Hirota bilinear method and symbolic computation. We found that: (i) in the elastic collisions, an external potential can change the propagation of the soliton, and thus the density of the matter wave in the two-species Bose-Einstein condensate (BEC); (ii) in the shape-changing collision, the solitons can exchange energy among different species, leading to the change of soliton amplitudes.We also present the collisions among three solitons of atomic matter waves.


2010 ◽  
Vol 24 (30) ◽  
pp. 2911-2920 ◽  
Author(s):  
ALAIN MOÏSE DIKANDÉ ◽  
ISAIAH NDIFON NGEK ◽  
JOSEPH EBOBENOW

A theoretical scheme for an experimental implementation involving bisolitonic matter waves from an attractive Bose–Einstein condensate, is considered within the framework of a non-perturbative approach to the associate Gross–Pitaevskii equation. The model consists of a single condensate subjected to an expulsive harmonic potential creating a double-condensate structure, and a gravitational potential that induces atomic exchanges between the two overlapping post condensates. Using a non-isospectral scattering transform method, exact expressions for the bright-matter–wave bisolitons are found in terms of double-lump envelopes with the co-propagating pulses displaying more or less pronounced differences in their widths and tails depending on the mass of atoms composing the condensate.


2020 ◽  
Vol 2020 (4) ◽  
Author(s):  
S Ohkubo ◽  
J Takahashi ◽  
Y Yamanaka

Abstract For more than half a century, the structure of $^{12}$C, such as the ground band, has been understood to be well described by the three $\alpha$ cluster model based on a geometrical crystalline picture. On the contrary, recently it has been claimed that the ground state of $^{12}$C is also well described by a nonlocalized cluster model without any of the geometrical configurations originally proposed to explain the dilute gas-like Hoyle state, which is now considered to be a Bose–Einstein condensate of $\alpha$ clusters. The challenging unsolved problem is how we can reconcile the two exclusive $\alpha$ cluster pictures of $^{12}$C, crystalline vs. nonlocalized structure. We show that the crystalline cluster picture and the nonlocalized cluster picture can be reconciled by noticing that they are a manifestation of supersolidity with properties of both crystallinity and superfluidity. This is achieved through a superfluid $\alpha$ cluster model based on effective field theory, which treats the Nambu–Goldstone zero mode rigorously. For several decades, scientists have been searching for a supersolid in nature. Nuclear $\alpha$ cluster structure is considered to be the first confirmed example of a stable supersolid.


2014 ◽  
Vol 89 (6) ◽  
Author(s):  
Yu-Jia Shen ◽  
Yi-Tian Gao ◽  
Da-Wei Zuo ◽  
Yu-Hao Sun ◽  
Yu-Jie Feng ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document