Integrability and Multi-Soliton Solutions for a Variable-Coefficient Coupled Gross–Pitaevskii System for Atomic MatterWaves

2012 ◽  
Vol 67 (10-11) ◽  
pp. 525-533
Author(s):  
Zhi-Qiang Lin ◽  
Bo Tian ◽  
Ming Wang ◽  
Xing Lu

Under investigation in this paper is a variable-coefficient coupled Gross-Pitaevskii (GP) system, which is associated with the studies on atomic matter waves. Through the Painlev´e analysis, we obtain the constraint on the variable coefficients, under which the system is integrable. The bilinear form and multi-soliton solutions are derived with the Hirota bilinear method and symbolic computation. We found that: (i) in the elastic collisions, an external potential can change the propagation of the soliton, and thus the density of the matter wave in the two-species Bose-Einstein condensate (BEC); (ii) in the shape-changing collision, the solitons can exchange energy among different species, leading to the change of soliton amplitudes.We also present the collisions among three solitons of atomic matter waves.

2010 ◽  
Vol 24 (30) ◽  
pp. 2911-2920 ◽  
Author(s):  
ALAIN MOÏSE DIKANDÉ ◽  
ISAIAH NDIFON NGEK ◽  
JOSEPH EBOBENOW

A theoretical scheme for an experimental implementation involving bisolitonic matter waves from an attractive Bose–Einstein condensate, is considered within the framework of a non-perturbative approach to the associate Gross–Pitaevskii equation. The model consists of a single condensate subjected to an expulsive harmonic potential creating a double-condensate structure, and a gravitational potential that induces atomic exchanges between the two overlapping post condensates. Using a non-isospectral scattering transform method, exact expressions for the bright-matter–wave bisolitons are found in terms of double-lump envelopes with the co-propagating pulses displaying more or less pronounced differences in their widths and tails depending on the mass of atoms composing the condensate.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Wen-guang Cheng ◽  
Biao Li ◽  
Yong Chen

The bilinear form, bilinear Bäcklund transformation, and Lax pair of a (2 + 1)-dimensional variable-coefficient Caudrey-Dodd-Gibbon-Kotera-Sawada equation are derived through Bell polynomials. The integrable constraint conditions on variable coefficients can be naturally obtained in the procedure of applying the Bell polynomials approach. Moreover, theN-soliton solutions of the equation are constructed with the help of the Hirota bilinear method. Finally, the infinite conservation laws of this equation are obtained by decoupling binary Bell polynomials. All conserved densities and fluxes are illustrated with explicit recursion formulae.


2020 ◽  
Vol 34 (32) ◽  
pp. 2050362
Author(s):  
Da-Wei Zuo ◽  
Xiao-Shuo Xiang

Wave function of the Bose–Einstein condensate satisfies the nonlinear evolution equation set, which is composed of the driven-dissipative Gross–Pitaevskii equations and rate equation (GPR). In this paper, a three coupled GPR equation is studied. By virtue of the bilinear method, multi-soliton solutions of this GPR equation are attained. Propagation and interaction of the solitons are discussed: propagation direction of the solitons are determined by the wave number; repellent and attractive two solitons are obtained by virtue of adjustment the wave numbers; interaction of the two solitons bound state are discussed; three solitons bound state are attained.


2012 ◽  
Vol 26 (19) ◽  
pp. 1250072 ◽  
Author(s):  
YI ZHANG ◽  
ZHILONG CHENG

In this paper, the time-dependent variable-coefficient KdV equation with a forcing term is considered. Based on the Hirota bilinear method, the bilinear form of this equation is obtained, and the multi-soliton solutions are studied. Then the periodic wave solutions are obtained by using Riemann theta function, and it is also shown that classical soliton solutions can be reduced from the periodic wave solutions.


2007 ◽  
Author(s):  
N. A. Kostov ◽  
V. A. Atanasov ◽  
V. S. Gerdjikov ◽  
G. G. Grahovski

Sign in / Sign up

Export Citation Format

Share Document