pitaevskii equation
Recently Published Documents


TOTAL DOCUMENTS

542
(FIVE YEARS 116)

H-INDEX

42
(FIVE YEARS 6)

2022 ◽  
Vol 12 (1) ◽  
Author(s):  
Jakub Kopyciński ◽  
Maciej Łebek ◽  
Maciej Marciniak ◽  
Rafał Ołdziejewski ◽  
Wojciech Górecki ◽  
...  

Describing properties of a strongly interacting quantum many-body system poses a serious challenge both for theory and experiment. In this work, we study excitations of one-dimensional repulsive Bose gas for arbitrary interaction strength using a hydrodynamic approach. We use linearization to study particle (type-I) excitations and numerical minimization to study hole (type-II) excitations. We observe a good agreement between our approach and exact solutions of the Lieb-Liniger model for the particle modes and discrepancies for the hole modes. Therefore, the hydrodynamical equations find to be useful for long-wave structures like phonons and of a limited range of applicability for short-wave ones like narrow solitons. We discuss potential further applications of the method.


2022 ◽  
Author(s):  
Yajie Yang ◽  
Ying Dong

Abstract The gain or loss effect on the dynamics of the matter-wave solitons in three-component Bose-Einstein condensates with time-modulated interactions trapped in parabolic external potentials are investigated analytically. Some exact matter-wave soliton solutions to the three-coupled Gross-Pitaevskii equation describing the three-component Bose-Einstein condensates are constructed by similarity transformation. The dynamical properties of the matter-wave solitons are analyzed graphically, and the effects of the gain or loss parameter and the frequency of the external potentials on the matter-wave solitons are explored. It is shown that the gain coefficient makes the atom condensate to absorb energy from the background, while the loss coefficient brings about the collapse of the condensate.


2022 ◽  
Vol 119 (1) ◽  
pp. e2111078118
Author(s):  
Benjamin Nagler ◽  
Sian Barbosa ◽  
Jennifer Koch ◽  
Giuliano Orso ◽  
Artur Widera

Relaxation of quantum systems is a central problem in nonequilibrium physics. In contrast to classical systems, the underlying quantum dynamics results not only from atomic interactions but also from the long-range coherence of the many-body wave function. Experimentally, nonequilibrium states of quantum fluids are usually created using moving objects or laser potentials, directly perturbing and detecting the system’s density. However, the fate of long-range phase coherence for hydrodynamic motion of disordered quantum systems is less explored, especially in three dimensions. Here, we unravel how the density and phase coherence of a Bose–Einstein condensate of 6Li2 molecules respond upon quenching on or off an optical speckle potential. We find that, as the disorder is switched on, long-range phase coherence breaks down one order of magnitude faster than the density of the quantum gas responds. After removing it, the system needs two orders of magnitude longer times to reestablish quantum coherence, compared to the density response. We compare our results with numerical simulations of the Gross–Pitaevskii equation on large three-dimensional grids, finding an overall good agreement. Our results shed light on the importance of long-range coherence and possibly long-lived phase excitations for the relaxation of nonequilibrium quantum many-body systems.


Author(s):  
Yunsong Guo ◽  
Yubin Jiao ◽  
Xiaoning Liu ◽  
Xiangbo Zhu ◽  
Ying Wang

In this study, we investigate the evolution of vortex in harmonically trapped two-component coupled Bose–Einstein condensate with quintic-order nonlinearity. We derive the vortex solution of this two-component system based on the coupled quintic-order Gross–Pitaevskii equation model and the variational method. It is found that the evolution of vortex is a metastable state. The radius of vortex soliton shrinks and expands with time, resulting in periodic breathing oscillation, and the angular frequency of the breathing oscillation is twice the value of the harmonic trapping frequency under infinitesimal nonlinear strength. At the same time, it is also found that the higher-order nonlinear term has a quantitative effect rather than a qualitative impact on the oscillation period. With practical experimental setting, we identify the quasi-stable oscillation of the derived vortex evolution mode and illustrated its features graphically. The theoretical results developed in this work can be used to guide the experimental observation of the vortex phenomenon in ultracold coupled atomic systems with quintic-order nonlinearity.


2021 ◽  
Vol 66 (12) ◽  
pp. 1024
Author(s):  
B.E. Grinyuk ◽  
K.A. Bugaev

Using the variational principle, we show that the condition of spatial collapse in a Bose gas is not determined by the value of the scattering length of the interaction potential between particles contrary to the result following from the Gross–Pitaevskii equation, where the collapse should take place at a negative scattering length.


Author(s):  
John D. Andersen ◽  
Srikanth Raghavan ◽  
V. M. Kenkre

In this paper, we discuss coherent atomic oscillations between two weakly coupled Bose–Einstein condensates that are energetically different. The weak link is notionally provided by a laser barrier in a (possibly asymmetric) multi-well trap or by Raman coupling between condensates in different hyperfine levels. The resultant boson Josephson junction dynamics is described by a double-well nonlinear Gross–Pitaevskii equation. On the basis of a new set of Jacobian elliptic function solutions, we describe the period of the oscillations as well as associated quantities and predict novel observable consequences of the interplay of the energy difference and initial phase difference between the two condensate populations.


SeMA Journal ◽  
2021 ◽  
Author(s):  
Alberto Enciso ◽  
Daniel Peralta-Salas

AbstractWe review recent rigorous results on the phenomenon of vortex reconnection in classical and quantum fluids. In the context of the Navier–Stokes equations in $$\mathbb {T}^3$$ T 3 we show the existence of global smooth solutions that exhibit creation and destruction of vortex lines of arbitrarily complicated topologies. Concerning quantum fluids, we prove that for any initial and final configurations of quantum vortices, and any way of transforming one into the other, there is an initial condition whose associated solution to the Gross–Pitaevskii equation realizes this specific vortex reconnection scenario. Key to prove these results is an inverse localization principle for Beltrami fields and a global approximation theorem for the linear Schrödinger equation.


2021 ◽  
Vol 9 ◽  
Author(s):  
Yu Song ◽  
Yu Mo ◽  
Shiping Feng ◽  
Shi-Jie Yang

Dark solitons dynamically generated from a potential moving in a one-dimensional Bose-Einstein condensate are displayed. Based on numerical simulations of the Gross-Pitaevskii equation, we find that the moving obstacle successively emits a series of solitons which propagate at constant speeds. The dependence of soliton emission on the system parameters is examined. The formation mechanism of solitons is interpreted as interference between a diffusing wavepacket and the condensate background, enhanced by the nonlinear interactions.PACS numbers: 03.75.Mn, 03.75.Lm, 05.30.Jp


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdelâali Boudjemâa

AbstractWe study the equilibrium properties of self-bound droplets in two-dimensional Bose mixtures employing the time-dependent Hartree–Fock–Bogoliubov theory. This theory allows one to understand both the many-body and temperature effects beyond the Lee–Huang–Yang description. We calculate higher-order corrections to the excitations, the sound velocity, and the energy of the droplet. Our results for the ground-state energy are compared with the diffusion Monte Carlo data and good agreement is found. The behavior of the depletion and anomalous density of the droplet is also discussed. At finite temperature, we show that the droplet emerges at temperatures well below the Berezinskii–Kosterlitz–Thouless transition temperature. The critical temperature strongly depends on the interspecies interactions. Our study is extended to the finite size droplet by numerically solving the generalized finite-temperature Gross-Pitaevskii equation which is obtained self-consistently from our formalism in the framework of the local density approximation.


Sign in / Sign up

Export Citation Format

Share Document