On the prime divisors of element orders

Author(s):  
Nguyen Ngoc Hung ◽  
Yong Yang
Author(s):  
Juan Martínez ◽  
Alexander Moretó

In 2014, Baumslag and Wiegold proved that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. This has led to a number of results that characterize the nilpotence of a group (or the existence of nilpotent Hall subgroups, or the existence of normal Hall subgroups) in terms of prime divisors of element orders. Here, we look at these results with a new twist. The first of our main results asserts that G is nilpotent if and only if o(xy) ⩽ o(x)o(y) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold theorem. The proof of this result is elementary. We prove some variations of this result that depend on the classification of finite simple groups.


2019 ◽  
Vol 149 (5) ◽  
pp. 1153-1162
Author(s):  
Alexander Moretó ◽  
Azahara Sáez

AbstractBaumslag and Wiegold have recently proven that a finite group G is nilpotent if and only if o(xy) = o(x)o(y) for every x, y ∈ G with (o(x), o(y)) = 1. Motivated by this surprisingly new result, we have obtained related results that just consider sets of prime divisors of element orders. For instance, the first of our main results asserts that G is nilpotent if and only if π(o(xy)) = π(o(x)o(y)) for every x, y ∈ G of prime power order with (o(x), o(y)) = 1. As an immediate consequence, we recover the Baumslag–Wiegold Theorem. While this result is still elementary, we also obtain local versions that, for instance, characterize the existence of a normal Sylow p-subgroup in terms of sets of prime divisors of element orders. These results are deeper and our proofs rely on results that depend on the classification of finite simple groups.


2020 ◽  
Vol 18 (1) ◽  
pp. 907-915
Author(s):  
Zhongbi Wang ◽  
Chao Qin ◽  
Heng Lv ◽  
Yanxiong Yan ◽  
Guiyun Chen

Abstract For a positive integer n and a prime p, let {n}_{p} denote the p-part of n. Let G be a group, \text{cd}(G) the set of all irreducible character degrees of G , \rho (G) the set of all prime divisors of integers in \text{cd}(G) , V(G)=\left\{{p}^{{e}_{p}(G)}|p\in \rho (G)\right\} , where {p}^{{e}_{p}(G)}=\hspace{.25em}\max \hspace{.25em}\{\chi {(1)}_{p}|\chi \in \text{Irr}(G)\}. In this article, it is proved that G\cong {L}_{2}({p}^{2}) if and only if |G|=|{L}_{2}({p}^{2})| and V(G)=V({L}_{2}({p}^{2})) .


2014 ◽  
Vol 150 (10) ◽  
pp. 1729-1741 ◽  
Author(s):  
John Lesieutre

AbstractWe exhibit a pseudoeffective $\mathbb{R}$-divisor ${D}_{\lambda }$ on the blow-up of ${\mathbb{P}}^{3}$ at nine very general points which lies in the closed movable cone and has negative intersections with a set of curves whose union is Zariski dense. It follows that the diminished base locus ${\boldsymbol{B}}_{-}({D}_{\lambda })={\bigcup }_{A\,\text{ample}}\boldsymbol{B}({D}_{\lambda }+A)$ is not closed and that ${D}_{\lambda }$ does not admit a Zariski decomposition in even a very weak sense. By a similar method, we construct an $\mathbb{R}$-divisor on the family of blow-ups of ${\mathbb{P}}^{2}$ at ten distinct points, which is nef on a very general fiber but fails to be nef over countably many prime divisors in the base.


Sign in / Sign up

Export Citation Format

Share Document