scholarly journals Simplified error bounds for turning point expansions

2020 ◽  
pp. 1-32
Author(s):  
T. M. Dunster ◽  
A. Gil ◽  
J. Segura

Recently, the present authors derived new asymptotic expansions for linear differential equations having a simple turning point. These involve Airy functions and slowly varying coefficient functions, and were simpler than previous approximations, in particular being computable to a high degree of accuracy. Here we present explicit error bounds for these expansions which only involve elementary functions, and thereby provide a simplification of the bounds associated with the classical expansions of Olver.

Author(s):  
T. M. Dunster

Uniform asymptotic expansions are derived for Whittaker’s confluent hypergeometric functions M κ , μ ( z ) and W κ , μ ( z ) , as well as the numerically satisfactory companion function W − κ , μ ( z   e − π i ) . The expansions are uniformly valid for μ → ∞ , 0 ≤ κ / μ ≤ 1 − δ < 1 and 0 ≤ arg ⁡ ( z ) ≤ π . By using appropriate connection and analytic continuation formulae, these expansions can be extended to all unbounded non-zero complex z . The approximations come from recent asymptotic expansions involving elementary functions and Airy functions, and explicit error bounds are either provided or available.


Sign in / Sign up

Export Citation Format

Share Document