Magnetohydrodynamics boundary layer flow of micropolar fluid over an exponentially shrinking sheet with thermal radiation: Triple solutions and stability analysis

Author(s):  
Rusya Iryanti Yahaya ◽  
Norihan Md Arifin ◽  
Siti Suzilliana Putri Mohamed Isa ◽  
Mohammad Mehdi Rashidi
2013 ◽  
Vol 29 (3) ◽  
pp. 559-568 ◽  
Author(s):  
G. C. Shit ◽  
R. Haldar ◽  
A. Sinha

AbstractA non-linear analysis has been made to study the unsteady hydromagnetic boundary layer flow and heat transfer of a micropolar fluid over a stretching sheet embedded in a porous medium. The effects of thermal radiation in the boundary layer flow over a stretching sheet have also been investigated. The system of governing partial differential equations in the boundary layer have reduced to a system of non-linear ordinary differential equations using a suitable similarity transformation. The resulting non-linear coupled ordinary differential equations are solved numerically by using an implicit finite difference scheme. The numerical results concern with the axial velocity, micro-rotation component and temperature profiles as well as local skin-friction coefficient and the rate of heat transfer at the sheet. The study reveals that the unsteady parameter S has an increasing effect on the flow and heat transfer characteristics.


2009 ◽  
Vol 64 (9-10) ◽  
pp. 575-582 ◽  
Author(s):  
Sohail Nadeem ◽  
Saeid Abbasbandy ◽  
Majid Hussain

An analysis has been carried out to obtain the series solution of boundary layer flow of a micropolar fluid towards a shrinking sheet. The governing equations of micropolar fluid are simplified using suitable similarity transformations and then solved by homotopy analysis method (HAM). The convergence of the HAM solutions has been obtained by using homotopy-pade approximation. The effects of various parameters such as porosity parameter R, the ratio λ and the microinertia K on the velocity and microinertia profiles as well as local skin friction coefficient are presented graphically and in tabulated form.


Sign in / Sign up

Export Citation Format

Share Document