Journal of Nanofluids
Latest Publications


TOTAL DOCUMENTS

807
(FIVE YEARS 229)

H-INDEX

21
(FIVE YEARS 9)

Published By American Scientific Publishers

2169-4338, 2169-432x

2021 ◽  
Vol 10 (4) ◽  
pp. 600-607
Author(s):  
A. Bhattacharyya ◽  
R. Sharma ◽  
M. K. Mishra ◽  
Ali J. Chamkha ◽  
E. Mamatha

This paper is basically devoted to carry out an investigation regarding the unsteady flow of dissipative and heat absorbing hydromagnetic graphene Maxwell nanofluid over a linearly stretched sheet taking momentum and thermal slip conditions into account. Ethylene glycol is selected as a base fluid while graphene particles are considered as nanoparticles. The highly nonlinear mathematical model of the problem is converted into a set of nonlinear coupled differential equations by means of fitting similarity variables. Further, Runge-Kutta Fehlberg algorithms along with the shooting scheme are instigated to analyse the numerical solution. The variations in graphene Maxwell nanofluid velocity and temperature owing to different physical parameters have been demonstrated via numerous graphs whereas Nusselt number and skin friction coefficients are illustrated in numeric data form and are reported in different tables. In addition, a statistical method is implemented for multiple quadratic regression estimation analysis on the numerical figures of wall velocity gradient and local Nusselt number to establish the connection among heat transfer rate and physical parameters. Our numerical findings reveal that the magnetic field, unsteadiness, inclination angle of magnetic field and porosity parameters boost the graphene Maxwell nanofluid velocity while Maxwell parameter has a reversal impact on it. The regression analysis confers that Nusselt number is more prone to heat absorption parameter as compared to Eckert number. Finally, the numerical findings are compared with those of earlier published articles under restricted conditions to validate the numerical solution. The comparison of numerical findings shows an excellent conformity among the results.


2021 ◽  
Vol 10 (4) ◽  
pp. 463-477
Author(s):  
Eyad M. Hamad ◽  
Aseel Khaffaf ◽  
Omar Yasin ◽  
Ziad Abu El-Rub ◽  
Samer Al-Gharabli ◽  
...  

Numerous researchers have reported significant improvements in nanofluid (NF) heat transfer (HT), suspension stability, thermal conductivity (TC), and rheological and mass transfer properties. As a result, nanofluids (NFs) play an important role in a variety of applications, including the health and biomedical engineering industries. The majority of the nanofluids (NFs) literature focuses on analyzing and comprehending the behavior of nanofluid models as heating or cooling mechanisms in various fields. This article represents a comprehensive study on nanofluids (NFs). It involves commonly used nanoparticles (NPs), magnetic nanofluids (MNFs), thermal conductivity (TC) enhancement, heat transfer (HT) enhancement, nanofluids (NFs) synthesis methods, stability evaluation methods, stability enhancement, nanofluids (NFs) applications in the biomedical field, and their impact on health and the environment. Nanofluids (NFs) play vital role in biomedical applications. It can be implemented in drug delivery systems, hyperthermia, sterilization processes, bioimaging, lubrication of orthopedic implants, and micro-pumping systems for drugs and hormones.


2021 ◽  
Vol 10 (4) ◽  
pp. 518-537
Author(s):  
R. Nasrin ◽  
S. A. Sweety ◽  
I. Zahan

Temperature dissipation in a proficient mode has turned into a crucial challenge in industrial sectors because of worldwide energy crisis. In heat transfer analysis, shell and tube thermal exchangers is one of the mostly used strategies to control competent heat transfer in industrial progression applications. In this research, a numerical analysis of turbulent flow has been conceded in a shell and tube thermal exchanger using Kays-Crawford model to investigate the thermal performance of pure water and different concentrated water-MWCNT nanofluid. By means of finite element method the Reynold-Averaged Navier-Stokes (RANS) and heat transport equations along with suitable edge conditions have been worked out numerically. The implications of velocity, solid concentration, and temperature of water-MWCNT nanofluid on the fluid flow formation and heat transfer scheme have been inspected thoroughly. The numerical results indicate that the variation of nanoparticles solid volume fraction, inflow fluid velocity and inlet temperature mannerism considerably revolutionize in the flow and thermal completions. It is perceived that using 3% concentrated water-MWCNT nanofluid, higher rate of heat transfer 12.24% is achieved compared that of water and therefore to enhance the efficiency of this heat exchanger. Furthermore, a new correlation has been developed among obtained values of thermal diffusion rate, Reynolds number and volume concentration of nanoparticle and found very good correlation coefficient among the values.


2021 ◽  
Vol 10 (4) ◽  
pp. 616-626
Author(s):  
Kawthar Dhif ◽  
F. Mebarek-Oudina ◽  
S. Chouf ◽  
H. Vaidya ◽  
Ali J. Chamkha

The main problem in the solar energy field is the storage of thermal energy. To divert this problem, it was suggested to use a flat-plat solar collector which also serves as a storage system; this solution will reduce the size of a refrigerating machine that we are studying. A high stored energy density is only possible if we through use latent heat of phase change. Thermal analysis has been developed for this type of storage collector for near-steady state conditions using a nanofluid heat storage substance depended on KNO3–NaNO3 binary salt mixture as PCM and a mix of Al2O3–SiO2 as nanoparticle, from which the new Hottel-Whillier-Bliss equations have been used for efficient flat plate collector. Computations were achieved for a large variety of parameters to verify the significance of the created model.


2021 ◽  
Vol 10 (4) ◽  
pp. 478-490
Author(s):  
M. Venkateswarlu ◽  
P. Bhaskar

The work of steady hydromagnetic stream of Casson liquid in a micro-channel constructed by two indefinite vertical proportionate walls in the appearance of thermal radiation is presented in this article. The effect of an imposed magnetic domain appearing scheduled to movement of an electrically administrating liquid is adopted into account. The exact solutions of the liquid velocity, imposed magnetic domain, and temperature domain have been obtained. Also, the analytical expressions for the skin-friction coefficient and imposed current density are obtained. The basic aspiration of this article is to reinvestigate the supremacy of pertinent physical constraints like magnetic Prandtl number, injection/suction parameter, Hartmann number, thermal radiation parameter, rarefaction parameter, wall ambient temperature difference ratio, and liquid wall interaction parameter over the imposed magnetic field and velocity of the liquid. Lorentz force which is obtained from magnetic field has a propensity to decline the motion of liquid and imposed magnetic field. The imposed current density rises with an enhancement in the hydromagnetic Prandtl number. This study is applied in the machines like transformers, generators, and motors work on the principle of electromagnetic induction. Results are compared with the literature in the limiting case.


2021 ◽  
Vol 10 (4) ◽  
pp. 552-563
Author(s):  
Rajesh Kumar Chandrawat ◽  
Varun Joshi ◽  
O. Anwar Bég

The dynamics of the interaction between immiscible fluids is relevant to numerous complex flows in nature and industry, including lubrication and coating processes, oil extraction, physicochemical separation techniques, etc. One of the most essential components of immiscible flow is the fluid interface, which must be consistently monitored. In this article, the unsteady flow of two immiscible fluids i.e., an Eringen micropolar and Newtonian liquid is considered in a horizontal channel. Despite the no-slip and hyper-stick shear stress condition at the channel edge, it is accepted that the liquid interface is dynamic, migrating from one position to the next and possibly get absolute change; as a result, The CS (continuum surface) model is integrated with the single moment equation based on the VOF (volume of fluid) approach to trace the interface. The immiscible fluids are considered to flow under three applied pressure gradients (constant, decaying, and periodic) and flow is analyzed under seamless shear stress over the entire interface. The modified cubic b-spline differential quadrature method (MCB-DQM) is used to solve the modeled coupled partial differential equations for the fluid interface evolution. The advection and tracking of the interface with time, wave number, and amplitude are illustrated through graphs. It is observed that the presence of micropolar parameters affects the interface with time. The novelty of the current study is that previous studies (which considered the smooth and unstable movement of the micropolar fluid, the steady stream of two immiscible fluids, and interface monitoring through different modes) are extended and generalized to consider the time-dependent flow of two immiscible fluids namely Eringen micropolar and Newtonian with a moving interface in a horizontal channel. For the decaying pressure gradient case, which requires more time to achieve the steady-state, the peak of the waves resembles those for the constant pressure gradient case. The interface becomes steady for a more extensive time when a constant pressure gradient is applied. The interface becomes stable quickly with time as the micropolar parameter is decreased for the constant pressure gradient case i.e., weaker micropolar fluids encourage faster stabilization of the interface. With periodic pressure gradient, the interface takes more time to stabilize, and the crest of the waves is significantly higher in amplitude compared to the constant and decaying pressure cases. The simulations demonstrate the excellent ability of MCB-DQM to analyze complex interfacial immiscible flows.


2021 ◽  
Vol 10 (4) ◽  
pp. 564-579
Author(s):  
Rujda Parveen ◽  
Priyajit Mondal ◽  
Tapas Ray Mahapatra

This research presents an investigation of laminar two-dimensional double-diffusive free convection and entropy formation in an inclined enclosure under the influence of an inclined magnetic field. The performance of natural convective heat transfer can be improved by doing modifications in enclosure geometry that impact the flow structure. We have considered a dome-shaped enclosure to examine the heat and mass transfer performance. The enclosure is saturated with Cu-water nanofluid and the two sidewalls of the enclosure are maintained at constant temperature Tc(<Th) and concentration cc(<ch). The top-curved wall is adiabatic, and the lower wall is discretely heated and concentrated. The governing equations are first non-dimensionalized and then written in stream function-velocity formulation that is solved numerically using the Bi-CGStab method. A comparison with previously published work in literature is presented and found to be in excellent agreement. Numerical simulations are performed for various values of considered parameters such as Rayleigh number (Ra), Hartmann number (Ha), the orientation of magnetic field (γ), volume fraction of nanoparticles (Φ), and inclination angle of the enclosure (δ). The mentioned parameters have a substantial impact on the cavity flow characteristics. The obtained results demonstrate that the average Sherwood number and Nusselt number are decreasing functions of both the Hartmann number and inclination angle of the enclosure. The minimum heat and mass transfer took place at δ = 135° as the angle of inclination of the enclosure restrains the fluid velocity and reduces the heat transfer rate. Also, entropy generation analysis is conducted for all the considered parameters. The results show that the dome-shaped enclosure has a substantial impact on the fluid flow that enables a smoother and more effective flow inside the cavity, which improves the natural convective heat and mass transmission.


2021 ◽  
Vol 10 (4) ◽  
pp. 590-599
Author(s):  
C. Haseena ◽  
A. N. S. Srinivas ◽  
C. K. Selvi ◽  
S. Sreenadh ◽  
B. Sumalatha

In this paper, a mathematical model is proposed to study the influence of elasticity on peristaltic flow of nanofluid in a vertical tube with temperature dependent viscosity. The expressions for axial velocity, temperature, flux and pressure gradient are derived. The different nanofluids suspensions are consider to analyze the influence of elasticity on flux variation. Application of blood flow through veins is studied by expressing relationship between pressure gradient and volume flow rate in an elastic tube. The effect of different pertinent parameters on the flow characteristics of nano fluid in an elastic tube with peristalsis is analyzed through graphs. The variation in flux for different nanofluids like pure water H2O, Copper-water nanofluid CuO + H2O, Silver-water Ag + H2O and Titanium oxide-water nanofluid TiO2 + H2O are illustrated through graphs. The variation in flux for various physical parameters such as amplitude ratio, heat source parameter, Grashof number, viscosity parameter and elastic parameters are discussed. The flux takes higher values for nano particles case when compared to pure water. The flux enhances with amplitude ratio, Grashof number, heat source/sink factor and viscosity factor. The flux is more for the Titanium oxide-water nanofluid TiO2 + H2O when compared to remaining cases. The important observation is that pressure rise along mean flow rate is increase due to raise in temperature of source or sink in puming region and decreases in co pumping region. In the absence of elastic parameter (α″ = 0), the results observed in the present study are similar to that of results observed by O. A. Beg et al., Results in Physics 7, 413 (2017).


2021 ◽  
Vol 10 (4) ◽  
pp. 538-551
Author(s):  
Himanshu Upreti ◽  
Alok Kumar Pandey ◽  
Sawan Kumar Rawat ◽  
Manoj Kumar

In the current study, 3D hydro-magnetic flow of CNTs-EG/EO/H2O nanofluids over bi-directional stretchable surface along with linear thermal radiation, modified Arrhenius, thermophoresis and Brownian diffusion are studied. The three base fluids i.e., EG (Ethylene Glycol), EO (Engine Oil) and H2O are considered for the analysis. For computing the effective viscosity and thermal conductivity of nanofluid, Wang’s viscosity model and Hamilton-Crosser’s thermal conductivity model have been used. The system of transformed non-linear ODEs is solved by shooting scheme. The comparison of heat transfer rate in CNTs-EG, CNTs-EO and CNTs-H2O nanofluids is depicted by bar diagrams. The outcomes of the present work showed that MWCNTs based nanofluids have a higher temperature gradient compared to that of SWCNTs based nanofluids. Moreover, temperature distribution corresponding to the engine oil-based nanofluids declined at a very high rate followed by ethylene glycol and water-based nanofluids, respectively.


2021 ◽  
Vol 10 (4) ◽  
pp. 608-615
Author(s):  
Hiranmoy Mondal ◽  
Sharmistha Ghosh ◽  
Pranab Kanti Roy ◽  
Sewli Chatterjee

We scrutinize and numerically investigate the behavior of magnetic nanofluid flow in stagnation region in the presence of ion-slip and Hall currents. Employing similarity technique, the governing equations modeling the boundary layer flow are switched into highly nonlinear ODEs. The resultant equations are then solved numerically by the method of spectral quasi-linearization. The effect of varying various pertinent parameters within the fluid flow are taken into account and the results are analyzed graphically. It may be noted that the velocity increases in the x- as well as z-directions with an increment in the Hall parameter. The concentration indicates a decreasing trend with increasing values of the Eckert number. The computed results also show that the volume fraction effects diminishes as the Schmidt number increases.


Sign in / Sign up

Export Citation Format

Share Document