Compact inverted triangle planar monopole antenna with a modified ground plane for ultra-wideband operation

2011 ◽  
Vol 54 (2) ◽  
pp. 503-505 ◽  
Author(s):  
Jinwoo Jung ◽  
Hyeonjin Lee ◽  
Yeongseog Lim
2004 ◽  
Vol 43 (6) ◽  
pp. 535-537 ◽  
Author(s):  
Saou-Wen Su ◽  
Kin-Lu Wong ◽  
Yuan-Tung Cheng ◽  
Wen-Shyang Chen

2012 ◽  
Vol 32 (4) ◽  
pp. 233-243
Author(s):  
M. Naser-Moghadasi ◽  
M. Alamolhoda ◽  
B. Rahmati ◽  
Bal S. Virdee

Author(s):  
Mohammad M. Fakharian

Abstract In this article, a dynamically switchable ultra-wideband (UWB) planar monopole antenna employing defected ground structure (DGS) with a folded stepped impedance resonator (SIR) that can operate as either a UWB mode or the single band-notched mode is introduced. The UWB monopole antenna contains a novel whirligig-shaped radiating patch and a chambered conductor as a partial ground plane. The switchable UWB antenna uses one PIN diode as switching elements in the DGS-SIR structure without any biasing network. When the state of diode is OFF, the planar monopole antenna changes to the UWB mode, and when the diode is turned ON, a frequency notch is created at 5–6 GHz. The state of diode is set to the “ON” state dynamically in the presence of a 5–6 GHz RF signal that is detected by using a wireless power management unit (PMU) that contains a broadband rectenna and a DC-DC passive booster. The rectenna consists of a novel cypress-shaped monopole antenna as a signal receiving part and two sub-rectifiers which are connected to a 3 dB branch-line coupler with a grounded isolation port. The antenna switches from UWB to single band-notched when an RF input signal (≥8.5 dBm) in the 5.25 GHz is sensed by the RF PMU with a conversion efficiency of 26% and DC output voltage of 0.36 V, and it fades immediately in real time when the external RF signal is eliminated. In the three-tone signals, the efficiency and input signal improvements are about 10% and −5.5 dBm in the low-power levels, especially, and so develop and enhance the performance of the dynamic reconfigurability.


2014 ◽  
Vol 6 (6) ◽  
pp. 555-564 ◽  
Author(s):  
Ramazan Köprü ◽  
Sedat Kilinç ◽  
Çağatay Aydin ◽  
Doğu Çağdaş Atilla ◽  
Cahit Karakuş ◽  
...  

In this paper, design, manufacture, and measurement of a wideband matching network for a broadband V-shaped square planar monopole antenna (V-SPMA) is presented. Matching network design is unavoidable in most cases even vital to facilitate a maximally flat power transfer gain for an antenna. In the work, a bandpass matching network (BPMN) design is done for a particular square monopole antenna with V-shaped coupling element that has essentially bandwidth increasing effect. Designed BPMN and the antenna forms a VSPMA–BPMN matched antenna structure. “real frequency technique” is employed in the BPMN design. BPMN prototype circuit has been constructed on an FR4 laminate with commercial microwave chip inductors and capacitors. Vector network analyzer gain and reflectance measurements of the matched antenna structure have shown highly compatible results to those of the theoretical design simulations along the passband (~0.8–4.7 GHz). Furthermore, newly proposed distributed capacitor–resistor lossy model for microstrip lines used in the BPMN circuit have exhibited that it can successfully mimic the measured gain and reflectance performance of the matched structure in passband and even in stopband upto 8 GHz. Designed structure can be utilized as a one single wideband broadcasting medium suitable for many communication standards such as GSM, 3G, and Wi-Fi.


Author(s):  
Hyun-Chul Kim ◽  
Jin-Woo Jung ◽  
Hyeon-Jin Lee ◽  
Yeong-Seog Lim

2020 ◽  
Vol 9 (2) ◽  
pp. 84-92
Author(s):  
A. R. Celik ◽  
M. B. Kurt

Detection of the breast cancer tumors at an early stage is very crucial to be successful in the treatment. Microwave measurement systems have gained much attention for this aim over last decades. The main principle of these systems is based on the significant difference in the dielectric properties of the malignant tumor and normal breast tissue in the microwave frequencies. In this paper, firstly several breast cancer detection techniques are mentioned. Then the advantages of the using microwaves in the detection systems are given. After that, some simulation and experimental studies of the radar-based ultra-wideband microwave measurement system are presented to detect tumor. The main purposes of these measurements are comparing the performance of a previously designed planar monopole antenna (PMA) with a dual-ridge horn (DRH) antenna and demonstrating a simple microwave breast cancer detection system. In the system, a planar breast phantom which is consisted of low dielectric constant material to represent the healthy tissue and high dielectric constant material to represent the tumor is used. Firstly, the measurements are made without tumor in the phantom. Then, the tumor-mimicking object is located to the phantom. In the measurements, both the PMA and DRH antennas are used respectively. These antennas are ultra-wideband and directional. They have narrow beamwidth and stable directional pattern at the interval of 3-10 GHz. According to the return loss results, the reflected energy increases when the antenna gets close to the tumor. Therefore, it can be said that the scattering parameters give important information about the tumor. According to the obtained results in this study, it can be said that the performance of the compact-sized PMA is better than the DRH antenna having larger size.


2005 ◽  
Vol 46 (6) ◽  
pp. 563-566 ◽  
Author(s):  
Wang-Sang Lee ◽  
Ki-Jin Kim ◽  
Dong-Zo Kim ◽  
Jong-Won Yu

Sign in / Sign up

Export Citation Format

Share Document