dielectric constant
Recently Published Documents


TOTAL DOCUMENTS

11719
(FIVE YEARS 1429)

H-INDEX

149
(FIVE YEARS 16)

Author(s):  
Aslina Abu Bakar ◽  
Muhammad Aiman Najmi bin Rodzali ◽  
Rosfariza Radzali ◽  
Azlina Idris ◽  
Ahmad Rashidy Razali

<p>In this research the dielectric constant of three types of Malaysian honey has been investigated using a non-destructive measurement technique. The objective of this research is to assess the dielectric constant of the three types of honey in Malaysia using a non-destructive measurement technique known as an open-ended coaxial probe in the frequency range from 100 MHz to 10 GHz frequency. Analysis on the effect water concentration in honey on the dielectric constant and the effect of temperature on dielectric constant of honey has been conducted. The three types of honey that have been chosen to be investigated in this project are stingless bee honey, wild honey and commercial (organic) honey and together their water adulterated samples. For this research, the probe had been set up by setting a range of frequency from 100 MHz to 10 GHz and needs to be calibrated with three calibration methods namely open, short and reference water. From the result it was found that the higher the temperature of the honey and the higher percentage of water content in the honey, the dielectric constant is increased. The dielectric constants of all honeys decreased with increasing frequency in the measured frequency range and increased with increase percentage of water content and temperature.</p>


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 628
Author(s):  
Yinlong Zhu ◽  
Xin Chen ◽  
Kaimei Chu ◽  
Xu Wang ◽  
Zhiqiang Hu ◽  
...  

Flexible sensing tends to be widely exploited in the process of human–computer interactions of intelligent robots for its contact compliance and environmental adaptability. A novel flexible capacitive tactile sensor was proposed for multi-directional force sensing, which is based on carbon black/polydimethylsiloxane (PDMS) composite dielectric layer and upper and lower electrodes of carbon nanotubes/polydimethylsiloxane (CNTs/PDMS) composite layer. By changing the ratio of carbon black, the dielectric constant of carbon black/PDMS composite layer increases at 4 wt%, and then decreases, which was explained according to the percolation theory of the conductive particles in the polymer matrix. Mathematical model of force and capacitance variance was established, which can be used to predict the value of the applied force. Then, the prototype with carbon black/PDMS composite dielectric layer was fabricated and characterized. SEM observation was conducted and a ratio was introduced in the composites material design. It was concluded that the dielectric constant of carbon sensor can reach 0.1 N within 50 N in normal direction and 0.2 N in 0–10 N in tangential direction with good stability. Finally, the multi-directional force results were obtained. Compared with the individual directional force results, the output capacitance value of multi-directional force was lower, which indicated the amplitude decrease in capacity change in the normal and tangential direction. This might be caused by the deformation distribution in the normal and tangential direction under multi-directional force.


Author(s):  
В.И. Николаев ◽  
Ю.Г. Пастернак ◽  
В.А. Пендюрин ◽  
С.М. Фёдоров

Предложена конструкция приземной многолучевой антенной решетки на основе линзы из гранитного щебня, позволяющая одновременно формировать до нескольких десятков лучей в длинноволновой области УКВ-диапазона волн. Эффективная диэлектрическая проницаемость гранитного щебня оценивалась с помощью формулы Лихтенекера для мелкодисперсных смесей; ее величина приблизительно равна 3. Для оценки величины замедления поверхностных волн в линзе использовалась методика анализа дисперсионных характеристик зеркального диэлектрического волновода; при высоте линзы 1.8 метра эффективная диэлектрическая проницаемость эквивалентного зеркального диэлектрического волновода равна 2.1. В качестве облучателей линзы - несимметричные электрические вибраторы, расположенные на окружности по периметру линзы, диаметр которой составляет 30 метров; диаметр подстилающей стальной поверхности составляет 40 метров. Предложенная антенная система характеризуется потерями в щебне около 3 дБ при диаметре линзы около 3,8 длин волн; показано, что коэффициент направленного действия у каждого луча может составлять около 15,5 дБ, при ширине главного лепестка в азимутальной плоскости по уровню половинной мощности около 10 градусов We propose a design of a surface multi-beam antenna array based on a lens of crushed granite, which makes it possible to simultaneously form up to several tens of beams in the long-wave region of the VHF wave range. We estimated the effective dielectric constant of crushed granite using the Lichtenecker formula for fine mixtures; its value is approximately equal to 3. To estimate the magnitude of the deceleration of surface waves in the lens, we used a technique to analyze the dispersion characteristics of a mirror dielectric waveguide; at a lens height of 1.8 meters, the effective dielectric constant of the equivalent mirror dielectric waveguide is 2.1. As irradiators of the lens - asymmetric electric vibrators located on a circle around the perimeter of the lens, the diameter of which is 30 meters; the diameter of the underlying steel surface is 40 meters. The proposed antenna system is characterized by a loss in rubble of about 3 dB with a lens diameter of about 3.8 wavelengths; the directivity of each beam can be about 15.5 dB, with the width of the main lobe in the azimuthal plane at half power level of about 10 degrees


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 269
Author(s):  
Konstantinos N. Koutras ◽  
Sokratis N. Tegopoulos ◽  
Vasilios P. Charalampakos ◽  
Apostolos Kyritsis ◽  
Ioannis F. Gonos ◽  
...  

In this work, the influence of semi-conductive SiC nanoparticles on the AC breakdown voltage and partial discharge development in natural ester oil FR3 is examined. Primarily, the dielectric constant and the electrical conductivity of the nanoparticles are measured following the broadband dielectric spectroscopy technique. The nanoparticles are added into the matrix following the ultrasonication process in three weight percentage ratios in order for their effect to be evaluated as a function of their concentration inside the base oil. The processing of the results reveals that the nanofluid containing SiC nanoparticles at 0.004% w/w demonstrates the highest AC dielectric strength improvement and shows the greatest resistance to the appearance of partial discharge activity. The mechanisms behind the aforementioned results are discussed in detail and confirmed by the broadband dielectric spectroscopy technique, which reveals that this particular nanofluid sample is characterized by lower dielectric constant and electrical conductivity than the one with double the weight percentage ratio.


2022 ◽  
Vol 2022 ◽  
pp. 1-13
Author(s):  
Huma Tariq ◽  
Fahad Azad

In this work, we have synthesized donor-acceptor (Al-Cu) codoped ZnO nanoparticles with a doping concentration of 0%, 0.25%, 0.5%, and 0.75% by coprecipitation method. The synthesized samples were then annealed at 350°C and 600°C. All the samples showed wurtzite structure of ZnO with no secondary phase. The increase in doping concentration led to deterioration of crystalline quality, while improved crystallinity was observed at higher annealing temperature. The morphological study of these samples showed good grain-to-grain contact with less isolated pores. These samples were further characterized by impedance spectroscopy for analyzing dielectric properties. The values of the real part of dielectric constant and tangent loss showed decreasing trend with frequency. The appearance of semicircular arcs in the impedance complex plane plots indicates contribution of grains and grain boundaries and presence of different relaxation processes. 0.5% Al and Cu codoped ZnO showed the best dielectric response with a high value of dielectric constant and low tangent loss.


Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 602
Author(s):  
Jiaying Zhang ◽  
Jin Huang ◽  
Peng Sun ◽  
Fanbo Meng ◽  
Jie Zhang ◽  
...  

With the advent of wearable communication devices, microstrip antennas have developed multiple applications due to their ultra-low-profile properties. Therefore, it is essential to analyze the problem of frequency shift and impedance mismatch when the antenna is bent. For the case of a rectangular patch antenna E-plane bent on the cylindrical surface, (1) this paper introduces the effective dielectric constant into the cavity model, which can accurately predict the resonance frequency of the antenna, and (2) according to the equivalent circuit model of the antenna resonance mode, the lumped element parameters are calculated based on the above effective dielectric constant, so that impedance characteristics and the S-parameter matching the port can be quickly constructed. From the perspective of circuit frequency characteristics, it explains the change in the transmission performance of the curved antenna. The experimental results show that the maximum difference between the experimental and theoretical calculation frequencies is less than 1%. These results verify the validity and applicability of the theory in the analysis of ultra-low-profile patch antennas and wearable electronic communication devices. It provides a theoretical basis for the fast impedance matching of patch antennas under different working conditions.


2022 ◽  
Author(s):  
Ahmed Sedky ◽  
Atif Mossad Ali ◽  
H. Algarni

Abstract We report here the structural, FTIR, optical and dielectric properties of Zn1−xAlxO with x = 00.00 < x ≤ 0.20)). The wurtzite structure is conformed to all samples and the lattice constants, crystallite diameter, porosity and average crystalline size are generally decreased. The residual stress is compressive for pure samples, but it is changed to tensile for the doped samples. Interestingly, Debye temperature and elastic modulus are increased as x increases to 0.10, followed by a decrease at x = 0.20. Two different energy gaps Egh and Egl are apparent for each sample, corresponding of two transition absorption peaks. Interestingly, the ΔE = (Egh – Egl) ~ 0.60 for all samples. Further, the residual dielectric constant is decreased by increasing x to 0.10, followed by a sharp increase at x = 0.20 while the opposite behavior for (N/m*). The dielectric constant ε′ is slightly increased as x increases to 0.025, followed by a sharp increase as x increases to 0.20, as well as the ac conductivity σ/. The conduction is electronic for x ≤ 0.025 samples, but it is changed to hole with an increase of x to 0.20. The binding energy Wm was decreased as x increases to 0.20, but there is no exact trend against x for the behaviors of minimum hopping distance Rmin and density of localized states N. In addition, the density of states at Fermi level N (EF) has an optimum value at 195 KHz for all samples. The F-factor for solar cell design is increased as x increases to 0.10, but it is almost constant at x = 0.20. The Cole-Cole plot is a straight line for x = 0.00, a semicircle arc for x = 0.025 and a complete semicircle for x ≥ 0.05. The impedance resistance of grain Z\(g) and grain boundaries Z\(gb) are gradually decreased by increasing x to 0.20. These outcomes indicate that the addition of Al to ZnO shifts the mechanical, optical, and dielectric medium to higher values, which is strongly recommended for the design of optoelectronic and solar cell instruments.


Coatings ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 77
Author(s):  
Abu Sadat M. Iftekhar Uddin ◽  
Dongin Lee ◽  
Chanseob Cho ◽  
Bonghwan Kim

The current study investigated the fabrication of multi-walled carbon nanotubes (MWCNTs) adhering to Barium titanate (BaTiO3) nanoparticles and poly(vinylidene fluoride) (PVDF) nanocomposites, as well as the impact of MWCNT on the PVDF-BaTiO3 matrix in terms of dielectric constant and dielectric loss with a view to develop a high performance piezoelectric energy harvester in future. The capacity and potential of as-prepared nanocomposite films for the fabrication of high-performance flexible piezoelectric nanogenerator (PNG) were also investigated in this work. In particular, five distinct types of nanocomposites and films were synthesized: PB (bare PVDF–BaTiO3), PBC-1 (PVDF–BaTiO3-0.1 wt% CNT), PBC-2 (PVDF–BaTiO3-0.3 wt% CNT), PBC-3 (PVDF–BaTiO3-0.5 wt% CNT), and PBC-4 (PVDF–BaTiO3-1 wt% CNT). The dielectric constant and dielectric loss increased as MWCNT concentration increased. Sample PBC-3 had the optimum dielectric characteristics of all the as-prepared samples, with the maximum output voltage and current of 4.4 V and 0.66 μA, respectively, with an applied force of ~2N. Fine-tuning the BaTiO3 content and thickness of the PNGs is likely to increase the harvester’s performance even more. It is anticipated that the work would make it easier to fabricate high-performance piezoelectric films and would be a suitable choice for creating high-performance PNG.


Nanomaterials ◽  
2022 ◽  
Vol 12 (2) ◽  
pp. 188
Author(s):  
Kyuichi Yasui ◽  
Hiroki Itasaka ◽  
Ken-ichi Mimura ◽  
Kazumi Kato

It has been reported that the flexoelectric effect could be dominant in the nanoscale. The discrepancy between theory and experiments on the frequency dependence of the dielectric constant of an ordered assembly of BaTiO3 nanocubes is nearly resolved by assuming the coexistence of flexo- and ferro-electric effects. Although flexoelectric polarizations perpendicular to the applied alternating electric field contribute to the dielectric constant, those parallel to the electric field do not contribute because the magnitude of the flexoelectric polarization does not change due to the mismatch of strain at the interface of the nanocubes. On the other hand, some dielectric response is possible for the ferroelectric component of the polarization parallel to the electric field.


Sign in / Sign up

Export Citation Format

Share Document