Complementary split ring resonator-based microstrip antenna for compact wireless applications

2013 ◽  
Vol 55 (4) ◽  
pp. 814-816 ◽  
Author(s):  
D. Laila ◽  
R. Sujith ◽  
V.A. Shameena ◽  
C.M. Nijas ◽  
V.P. Sarin ◽  
...  
2016 ◽  
Vol 54 (6) ◽  
pp. 689 ◽  
Author(s):  
Phan Duy Tung ◽  
Phan Huu Lam ◽  
Nguyen Thi Quynh Hoa

A microstrip antenna using negative index metamaterial based on complementary split ring resonator (CSRR)-loaded ground has been investigated in order to miniaturize the size and improve the antenna characteristics. The proposed antennas are designed on FR4 material and simulated results are provided by HFSS software. The metamaterial antenna was reduced 75 % the overall size compared to the normal microstrip antenna. Furthermore, compared with the normal microstrip antenna, the antenna characteristics of the metamaterial antenna were improved significantly.  The proposed metamaterial antenna exhibited the antenna resonate at 2.45 GHz, the gain of higher than 6.5 dB and the bandwidth of 110 MHz through the whole WLAN band.  The obtained results indicated that the proposed antenna is a good candidate for WLAN applications.


2021 ◽  
Author(s):  
Shantha Selvakumari R ◽  
Vishnoo Priyaa P

Abstract This paper presents the design and simulation of patch antenna loaded with metamaterial called Complementary Split Ring Resonator (CSRR) with increased gain and bandwidth suitable for wireless applications such as satellite, TV and radar applications. FR4 substrate with dielectric constant (εr ) of 4.4 is used. The radiating patch consists of CSRR structure fed by microstrip line to achieve triple(C, X, Ku ) band characteristics. The proposed antenna is designed and simulated using Ansys High Frequency Structural Simulator (HFSS). The proposed antenna with 4 rings having a resonant frequency of 7.662, 9.8510, 10.9455, 11.8410, 12.7365 and 13.7315GHz and the bandwidth of 230, 1090, 640, 580, 620 and 2000MHz respectively. The proposed antenna with 6 rings also having a resonant frequency of 7.7615, 9.9525, 11.0450, 11.9405 and13.7315GHz and bandwidth of 160, 1130, 490, 1360 and 1480MHz are achieved. The proposed antenna is analyzed in terms of return loss, VSWR, gain and bandwidth. The electric field and surface current distribution were observed for the proposed antenna having 6 rings.


2015 ◽  
Vol 25 (4) ◽  
pp. 669-681 ◽  
Author(s):  
Indhumathi Kulandhaisamy ◽  
Arun Kumar Shrivastav ◽  
Malathi Kanagasabai ◽  
Jayaram Kizhekke Pakkathillam

Sign in / Sign up

Export Citation Format

Share Document